

MATLAB®

A Practical Introduction to Programming
and Problem Solving

This page intentionally left blank

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

MATLAB®

A Practical Introduction to Programming
and Problem Solving

Sixth Edition

Stormy Attaway
Boston University

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Butterworth-Heinemann is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2023 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center
and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book.

This book’s use or discussion of MATLAB® software or related products does not constitute endorsement or
sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden
our understanding, changes in research methods, professional practices, or medical treatment may become
necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using
any information, methods, compounds, or experiments described herein. In using such information or methods
they should be mindful of their own safety and the safety of others, including parties for whom they have a
professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence or
otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the
material herein.

ISBN: 978-0-323-91750-6

For information on all Butterworth-Heinemann publications
visit our website at https://www.elsevier.com/books-and-journals

Publisher: Katey Birtcher
Acquisitions Editor: Steve Merken
Editorial Project Manager: Chris Hockaday/Naomi Robertson
Production Project Manager: Kamatchi Madhavan
Cover Designer: Greg Harris

Typeset by STRAIVE, India

Printed in India
Last digit is the print number: 9 8 7 6 5 4 3 2 1

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Contents

PREFACE.. ix

ACKNOWLEDGMENTS..xxi

PART 1 Introduction to Programming Using MATLAB®

CHAPTER 1 Introduction to MATLAB®...3

1.1 Getting into MATLAB...4

1.2 The MATLAB Desktop Environment.. 5

1.3 Variables and Assignment Statements................................... 6

1.4 Numerical Expressions...11

1.5 Characters and Strings...18

1.6 Relational Expressions..18

1.7 Type Ranges and Type Casting...23

1.8 Built-in Numerical Functions...26

1.9 Using MAT-Files for Variables..28

1.10 Additional MATLAB Products..29

Summary..33

Common Pitfalls..33

Programming Style Guidelines..34

CHAPTER 2 Vectors and Matrices..39

2.1 Vectors and Matrices..39

2.2 Vectors and Matrices as Function Arguments.......................56

2.3 Scalar and Array Operations on Vectors and Matrices..........60

2.4 Logical Vectors..62

2.5 Matrix Operations and Matrix Properties...............................67

Summary..76

Common Pitfalls..76

Programming Style Guidelines..77

CHAPTER 3 Introduction to MATLAB Programming..............................83

3.1 Algorithms...84

3.2 MATLAB Scripts...85
v

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

3.3 Input and Output.. 89

3.4 Scripts with Input and Output...97

3.5 Scripts to Produce and Customize Simple Plots..................98

3.6 Introduction to File Input/Output (Load and Save).............104

3.7 User-Defined Functions that Return a Single Value..........109

3.8 Local Functions in Scripts...118

3.9 Commands and Functions...119

3.10 Introduction to Live Scripts...120

Summary..125

Common Pitfalls..125

Programming Style Guidelines..126

CHAPTER 4 Selection Statements..131

4.1 The if Statement..131

4.2 The if-else Statement..135

4.3 Nested if-else Statements..138

4.4 The Switch Statement...143

4.5 The “is” Functions in MATLAB..146

Summary..151

Common Pitfalls..151

Programming Style Guidelines..152

CHAPTER 5 Loop Statements and Vectorizing Code............................157

5.1 The for Loop..158

5.2 Nested for Loops...165

5.3 While Loops...172

5.4 Loops with Vectors and Matrices; Vectorizing.....................180

5.5 Timing..189

Summary..195

Common Pitfalls..195

Programming Style Guidelines..195

CHAPTER 6 MATLAB Programs...203

6.1 More Types of User-Defined Functions................................203

6.2 MATLAB Program Organization..212

6.3 Application: Menu-Driven Modular Program.......................218

6.4 Variable Scope...224

6.5 Debugging Techniques..229

6.6 Tasks in Live Scripts, Code Cells, and Publishing Code......234

Summary..241

Common Pitfalls..241

Programming Style Guidelines..241

vi Contents

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

CHAPTER 7 Text Manipulation..249

7.1 Characters, Character Vectors, and String Arrays...............249

7.2 Operations on Text..252

7.3 The “is” Functions for Text...266

7.4 Converting Between Text and Number Types......................267

Summary..271

Common Pitfalls..271

Programming Style Guidelines.. 271

CHAPTER 8 Data Structures...277

8.1 Cell Arrays... 278

8.2 Structures.. 282

8.3 Advanced Data Structures..295

8.4 Sorting...300

Summary..309

Common Pitfalls..309

Programming Style Guidelines.. 309

PART 2 Advanced Topics for Problem Solving
with MATLAB

CHAPTER 9 Data Transfer..317

9.1 Writing and Reading Spreadsheet and csv Files..................318

9.2 Lower-Level File I/O Functions..319

9.3 Data Transfer with Web Sites...328

Summary..334

Common Pitfalls..334

Programming Style Guidelines.. 335

CHAPTER 10 Advanced Functions..341

10.1 Variable Numbers of Arguments..341

10.2 Validating Function Arguments... 346

10.3 Anonymous Functions and Function Handles....................348

10.4 Uses of Function Handles...350

10.5 Nested Functions..354

10.6 Recursive Functions..355

Summary..362

Common Pitfalls..362

Programming Style Guidelines.. 362

CHAPTER 11 Introduction to Object-Oriented Programming

and Graphics...369

11.1 Object-Oriented Programming..369

11.2 Using Objects with Graphics and Plot Properties..............370

viiContents

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

11.3 User-Defined Classes and Objects.....................................378

Summary..406

Common Pitfalls..406

Programming Style Guidelines..406

CHAPTER 12 Advanced Plotting Techniques..411

12.1 Plot Functions and Customizing Plots................................412

12.2 3D Plots...423

12.3 Primitive Graphics Objects..426

12.4 Plot Applications..433

12.5 Saving and Printing Plots..436

Summary..440

Common Pitfalls..440

Programming Style Guidelines..440

CHAPTER 13 Sights and Sounds..445

13.1 Image Processing..445

13.2 Introduction to Apps and Graphical User Interfaces..........457

13.3 App Designer...474

13.4 Sound Files..484

Summary..489

Common Pitfalls..489

Programming Style Guidelines..489

CHAPTER 14 Advanced Mathematics...497

14.1 Set Operations...497

14.2 Complex Numbers...501

14.3 Matrix Solutions to Systems of Linear Algebraic

Equations...508

14.4 Symbolic Mathematics..515

14.5 Calculus: Integration and Differentiation...........................521

Summary..528

Common Pitfalls..528

Programming Style Guidelines..528

CHAPTER 15 Basic Machine Learning Algorithms and Concepts.........533

15.1 Preprocessing Data, Basic Workflow.................................534

15.2 Algorithms and Model Performance...................................537

15.3 Statistics and Machine Learning Toolbox™.......................540

Summary..546

Common Pitfalls..546

APPENDIX I...549

APPENDIX II..561
INDEX..563

viii Contents

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Preface

MOTIVATION

The purpose of this book is to teach basic programming concepts and skills

needed for basic problem solving using MATLAB® as the vehicle. MATLAB is

a powerful software package that has built-in functions to accomplish a diverse
range of tasks, from mathematical operations to three-dimensional imaging.

Additionally, MATLAB has a complete set of programming constructs (basic

coding building blocks) that allow users to customize programs to their own
specifications.

There are many books that introduce MATLAB. There are two basic flavors of
these books: those that demonstrate the use of the built-in functions in

MATLAB, with a chapter or two on some programming concepts; and those that

cover only the programming constructs without mentioning many of the built-
in functions that make MATLAB efficient to use. Someone who learns just the

built-in functions will be well-prepared to use MATLAB but would not under-

stand basic programming concepts. That person would not be able to then
learn a language such as C++ or Java without taking another introductory

course, or reading another book, on the programming concepts. Conversely,

anyone who learns only programming concepts first (using any language)
would tend to write highly inefficient code using control statements to solve

problems, not realizing that in many cases these are not necessary in MATLAB.

Instead, this book takes a hybrid approach, introducing both the traditional
programming approaches and the efficient uses. The challenge for students

is that it is nearly impossible to predict whether they will in fact need to know

traditional programming concepts later on or whether a software package such
as MATLAB will suffice for their careers. Therefore the best approach for begin-

ning students is to give them both: the traditional programming concepts, and

the efficient built-in functions. Because MATLAB is very easy to use, it is a per-
fect platform for this approach to teaching programming and problem solving.

ix

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Because programming concepts are critically important to this book, emphasis

is not placed on the time-saving features that evolve with every new MATLAB
release. For example, statistics on variables are available readily in the Work-

spaceWindow. This is not shown in any detail in the book because of the desire

to explain the concepts in the book.

MODIFICATIONS IN THE SIXTH EDITION

The major modification is the introduction of concepts and terminology used
in Data Science andMachine Learning. These are increasingly important topics,

useful in all fields, but they are very complex. Therefore, rather than just adding

another chapter to the end of this book, these concepts are introduced through-
out the book. At the end of every chapter, a few topics that are related to that

chapter will be introduced in a supplement of only approximately two pages.

By doing this, the concepts and terminologies used in Data Science and
Machine Learning are gradually introduced. These supplements also serve to

add context to each chapter. Then, at the end, there is a new chapter on this

material, but it is short because the first 30 pages of the chapter are already
spread throughout the book.

Other changes in the Sixth Edition of this book include the following:

n Use of MATLAB Version R2021b

n New section introducing controls and tasks in the Live Editor
n New section on validating function arguments

n Earlier coverage of matrix operations and matrix properties

n Earlier coverage of live scripts
n Earlier coverage of .mat files

n Usage of built-in files, including .mat files, .csv files, and .jpg files
n More coverage of data structures including tables

n New section on reading from and writing to .csv and spreadsheet files

using readtable, writetable, readmatrix, and writematrix, replacing the
old xlsread, xlswrite, csvread, and csvwrite functions, which are no

longer recommended

n More plot functions, including scatter, gscatter, xline, yline, sgtitle, and
subtitle

n More “is” functions, including ismethod and isnumeric

n More table functions including head, tail, preview, addvars, movevars,
removevars, and renamevars

n New basic functions including dimension functions height and width,

and string function append
n Usage of functions that work with data including normalize, rmoutliers,

missing, and fillmissing

x Preface

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n Usage of “mustBe” functions for validating function arguments

n Change in focus from help to the online Documentation pages

n Many modified and new end-of-chapter exercises (over 100 new, �25%,
are new)

Some of the Advanced Mathematics topics that were previously covered in

Chapter 14 have beenmoved. Coverage of statistical functions has beenmoved

to theMachine Learning supplements at the end of Chapters 2 and 10 (and aug-
mented in the supplements in Chapters 3 and 11). Fitting curves to data has

been moved (and augmented) to the Machine Learning supplements at the

end of Chapters 12 and 14.

KEY FEATURES

Side-by-Side Programming Concepts and Built-In Functions

The most important and unique feature of this book is that it teaches program-

ming concepts and the use of the built-in functions in MATLAB, side-by-side. It
starts with basic programming concepts such as variables, assignments, input/

output, selection, and loop statements. Then, throughout the rest of the book,
many times a problem will be introduced and then solved using the “traditional

method” and also using the “efficient method.” This will not be done in every

case to the point that it becomes tedious, but just enough to get the ideas across.

Systematic Approach

Another key feature is that the book takes a very systematic, step-by-step

approach, building on concepts throughout the book. It is very tempting in
a MATLAB text to show built-in functions or features early on with a note that

says “we’ll do this later.” This book does not do that; functions are covered

before they are used in examples. Additionally, basic programming concepts
will be explained carefully and systematically. Very basic concepts such as loop-

ing to calculate a sum, counting in a conditional loop, and error-checking are

not found in many texts but are covered here.

Data Transfer

Many applications in engineering and the sciences involve manipulating large

data sets that are stored in external files. MostMATLAB texts at leastmention the
save and load functions, and in some cases also some of the lower-level file

input/output functions. Because file input and output are so fundamental to

so many applications, this book will cover several low-level file input/output
functions, as well as reading from and writing to spreadsheet files and .csv files.

Later chapters will also deal with audio and image files. These file input/output

xiPreface

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

concepts are introduced gradually: first load and save in Chapter 3, then lower-

level functions in Chapter 9, and finally sound and images in Chapter 13. A
brief introduction to RESTFUL web functions, which import data from web-

sites, is given in Chapter 9.

User-Defined Functions

User-defined functions are a very important programming concept, and yet
many times the nuances and differences between concepts such as types of

functions and function calls versus function headers can be very confusing

to beginning programmers. Therefore these concepts are introduced gradually.
First, arguably the easiest type of functions to understand, those that calculate

and return one single value, are demonstrated in Chapter 3. Later, functions

that return no values and functions that return multiple values are introduced
in Chapter 6. Finally, advanced function features are shown in Chapter 10.

Advanced Programming Concepts

In addition to the basics, some advanced programming concepts such as text

manipulation, data structures (e.g., structures, tables, and cell arrays), recur-

sion, anonymous functions, and variable number of arguments to functions
are covered. Sorting is also addressed. All of these are again approached system-

atically; for example, cell arrays are covered before they are used in file input
functions and as labels on pie charts.

Problem-Solving Tools

In addition to the programming concepts, some basic mathematics necessary

for solving many problems will be introduced. These will include statistical

functions, solving sets of linear algebraic equations, and fitting curves to data.
The use of complex numbers and some calculus (integration and differentia-

tion) will also be introduced. The built-in functions in MATLAB to perform

these tasks will be described.

Plots, Imaging, and Graphical User Interfaces

Simple two-dimensional plots are introduced very early in the book

(Chapter 3) so that plot examples can be used throughout. A separate chapter,

Chapter 12, shows more plot types and demonstrates customizing plots and
how the graphics properties are handled in MATLAB. This chapter makes use

of text and cell arrays to customize labels. Also, there is an introduction to

image processing and the basics necessary to understand programming Graph-
ical User Interfaces (GUIs) in Chapter 13. App Designer, which creates GUIs

using object-oriented code, is also introduced in Chapter 13.

xii Preface

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Vectorized Code

Efficient uses of the capabilities of the built-in operators and functions in
MATLAB are demonstrated throughout the book. To emphasize the importance

of using MATLAB efficiently, the concepts and built-in functions necessary for

writing vectorized code are treated very early in Chapter 2. Techniques such as
preallocating vectors and using logical vectors are then covered in Chapter 5 as

alternatives to selection statements and looping through vectors and matrices.

Methods of determining how efficient the code is are also covered.

Object-Oriented Programming

Creating objects and classes in MATLAB has been an option for some time, but
as of R2014b, all Graphics objects are truly objects. Thus, object-oriented pro-

gramming (OOP) is a very important part of MATLAB programming. Applica-

tions using App Designer reinforce the concepts.

Data Science

Many concepts related to data science, such as normalizing vectors, finding cor-

relations between vectors, randomizing data, visualizing data, and data scrub-
bing are introduced in the end-of-chapter supplements and also in Chapter 15.

Machine Learning

Concepts related to Machine Learning, including types of algorithms (super-

vised learning: classification and regression; unsupervised learning: clustering),

binning/bucketing, one-hot encoding, assessing model performance, confu-
sion matrices, split and cross validation, hyperparameter tuning, feature engi-

neering, splitting data, and basic workflows are introduced in the end-of-

chapter supplements and in Chapter 15.

LAYOUT OF TEXT

This text is divided into two parts: the first part covers programming constructs
and demonstrates the programming method versus efficient use of built-in

functions to solve problems. The second part covers tools that are used for basic

problem solving, including plotting, image processing, and techniques to solve
systems of linear algebraic equations, fit curves to data, and perform basic sta-

tistical analyses. The first six chapters cover the very basics in MATLAB and in

programming, and are all prerequisites for the rest of the book. After that, many
chapters in the problem solving section can be introducedwhen desired, to pro-

duce a customized flow of topics in the book. This is true to an extent, although

xiiiPreface

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

the order of the chapters has been chosen carefully to ensure that the coverage is

systematic.

The individual chapters and which topics are required for each chapter are

described here.

PART 1: INTRODUCTION TO PROGRAMMING USING
MATLAB

Chapter 1: Introduction to MATLAB begins by covering the MATLAB Desktop
Environment. Variables, assignment statements, and types are introduced.

Mathematical and relational expressions and the operators used in them are

covered, as are characters, random numbers, and the use of built-in functions
and the Help browser. The use of .mat files to store variables is introduced.

Alternate MATLAB platforms are also introduced.

Chapter 2: Vectors and Matrices introduce creating and manipulating vectors
and matrices. Array operations, matrix operations (such as matrix multiplica-

tion), and matrix properties are explained. The use of vectors and matrices as
function arguments and functions that are written specifically for vectors

and matrices are covered. Logical vectors and other concepts useful in vectoriz-

ing code are emphasized in this chapter.

Chapter 3: Introduction to MATLAB Programming introduces the idea of

algorithms and scripts. This includes simple input and output and comment-

ing. Scripts are then used to create and customize simple plots and to do file
input and output. Finally, the concept of a user-defined function is introduced

with only the type of function that calculates and returns a single value. The Live

Editor is introduced.

Chapter 4: Selection Statements introduce the use of logical expressions in if

statements, with else and elseif clauses. The switch statement is also demon-
strated, as is the concept of choosing from a menu. Also, functions that return

logical true or false are covered.

Chapter 5: Loop Statements and Vectorizing Code introduce the concepts of
counted (for) and conditional (while) loops. Many common uses such as sum-

ming and counting are covered. Nested loops are also introduced. Some more

sophisticated uses of loops such as error-checking and combining loops and
selection statements are also covered. Finally, vectorizing code, by using

built-in functions and operators on vectors and matrices instead of looping

through them, is demonstrated. Tips for writing efficient code are emphasized,
and tools for analyzing code are introduced.

xiv Preface

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The concepts in the first five chapters are assumed throughout the rest of

the book.

Chapter 6: MATLAB Programs cover more on scripts and user-defined func-

tions. User-defined functions that return more than one value and also that
do not return anything are introduced. The concept of a program in MATLAB,

which normally consists of a script that calls user-defined functions, is demon-

strated with examples. A longer, menu-driven program is shown as a reference
but could be omitted. Local functions and scope of variables are also intro-

duced, as are some debugging techniques. The use of controls and tasks in live

scripts is covered.

The concept of a program is used throughout the rest of the book.

Chapter 7: Text Manipulation covers many built-in text manipulation func-
tions and converting between string and number types. Several examples

include using custom strings in plot labels and input prompts. The new string

type is introduced.

Chapter 8: Data Structures introduce three main data structures: cell arrays,

structures, and tables. Once structures are covered, more complicated data
structures such as nested structures and vectors of structures are also intro-

duced. Cell arrays are used in several applications in later chapters, such as file

input in Chapter 9, variable number of function arguments in Chapter 10, and
plot labels in Chapter 12, and are therefore considered important and are cov-

ered first. The section on structures can be omitted, although the use of struc-

ture variables to store object properties is shown in Chapter 11. The use of
tables is common in Machine Learning so that coverage is important before

Chapter 15. Other data structures such as categorical arrays are also introduced.

Methods of sorting are described. Sorting a vector of structures is described, but
this section can be omitted.

PART II: ADVANCED TOPICS FOR PROBLEM SOLVING
WITH MATLAB

Chapter 9: Data Transfer covers lower-level file input/output statements that

require opening and closing the file. Functions that can read the entire file at

once and those that require reading one line at a time are introduced and exam-
ples that demonstrate the differences in their use are shown. Additionally, tech-

niques for reading from andwriting to spreadsheet files and .csv are introduced.

Cell arrays and text functions are used extensively in this chapter. Reading data
from websites is also introduced.

xvPreface

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Chapter 10: Advanced Functions cover more advanced features of and types of

functions, such as anonymous functions, nested functions, and recursive func-
tions. Function handles and their use both with anonymous functions and

function functions are introduced. The concept of having a variable number

of input and/or output arguments to a function is introduced; this is implemen-
ted using cell arrays. String functions are also used in several examples in this

chapter. The section on recursive functions is at the end and may be omitted.

Validating function arguments is also included, but this section may be
omitted.

Chapter 11: Introduction to Object-Oriented Programming and Graphics

As of version R2014b, all plot objects are actual objects. This chapter introduces

Object-Oriented Programming (OOP) concepts and terminology using plot

objects and then expands to how to write your own class definitions and create
your own objects.

Chapter 12: Advanced Plotting Techniques continue with more on the plot
functions introduced in Chapter 3. Different two-dimensional plot types, such

as logarithmic scale plots, pie charts, and histograms are introduced, as are cus-

tomizing plots using cell arrays and string functions. Three-dimensional plot
functions and some functions that create the coordinates for specified objects

are demonstrated. The notion of Graphics is covered, and some graphics prop-

erties such as line width and color are introduced. Core graphics objects and
their use by higher-level plotting functions are demonstrated. Applications that

involve reading data from files and then plotting use both cell arrays and string

functions.

Chapter 13: Sights and Sounds briefly discuss sound files and introduce image

processing. An introduction to programming Graphical User Interfaces (GUIs)
is also given, including the creation of a button group and embedding images in

a GUI. Nested functions are used in the GUI examples. The App Designer is

introduced; it creates OOP code and builds on the concepts from Chapter 11.

Chapter 14: AdvancedMathematics covers five basic topics: it starts with some

of the built-in set operations in MATLAB, then complex numbers, solving sys-

tems of linear algebraic equations, and integration and differentiation in calcu-
lus. Finally, some of the symbolic math toolbox functions are shown, including

those that solve equations. This method returns a structure as a result.

Chapter 15: Basic Machine Learning Algorithms and Concepts build on the

data science and machine learning supplements at the ends of all of the previ-

ous 14 chapters. All of this can be omitted, but it provides context and intro-
duces real-world applications.

xvi Preface

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PATH THROUGH THE BOOK

It has come tomy attention that not all courses that use this text use all sections.

In particular, not everyone gets to images and apps, which are the cool
applications! I have reorganized some of the chapters and sections to make

it easier to get to the fun, motivating applications including images and App

Designer.What follows is a path through the book to get there, including which
sections can be skipped.

Chapter 1: The last two sections, 1.9 and 1.10, can be skipped

Chapter 2: Section 2.5 can be skipped

Chapters 3 and 4: Both are fundamental

Chapter 5: The last section on Timing can be skipped

Chapter 6: The last two sections can be skipped

Chapter 7: The last section can be skipped

Chapter 8: Cell arrays and structures are important, but the last two sections can

be skipped

Chapter 9: This can be skipped entirely, although there are very cool applica-

tions in 9.3

Chapter 10: Variable number of arguments, nested functions, and anonymous

functions are all used in App Designer, but the other sections can be skipped

Chapter 11: The first two sections are fundamental, but the rest can be skipped

Chapter 12: This can be skipped entirely

Chapter 13: Most sections are independent, although the concept of callback

functions is explained in the GUI section and then used in the App Designer

section

Chapter 14: All sections can be skipped

Chapter 15: All sections can be skipped

PEDAGOGICAL FEATURES

There are several pedagogical tools that are used throughout this book that are
intended to make it easier to learn the material.

First, the book takes a conversational tone with sections called “Quick Ques-

tion!” These are designed to stimulate thought about the material that has just

been covered. The question is posed, and then the answer is given. It will be

xviiPreface

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

most beneficial to the reader to try to think about the question before reading

the answer! In any case, they should not be skipped over because the answers
often contain very useful information.

“Practice” problems are given throughout the chapters. These are very simple
problems that drill the material just covered.

“Explore Other Interesting Features.” This book is not intended to be a complete

reference book and cannot possibly cover all of the built-in functions and tools
available in MATLAB; however, in every chapter there will be a list of functions

and/or commands that are related to the chapter topics, which readers may

wish to investigate.

When some problems are introduced, they are solved both using “The Tradi-

tional Method” and also “The Efficient Method.” This facilitates understanding
the built-in functions and operators in MATLAB and the underlying program-

ming concepts. “The Efficient Method” highlights methods that will save time

for the programmer, and, in many cases, are also faster to execute in MATLAB.

Additionally, to aid the reader:

n Identifier names are shown in italic.

n MATLAB function names are shown in bold.

n Reserved words are shown in bold and underlined.
n Key important terms are shown in bold and italic.

The end of chapter “Summary” contains, where applicable, several sections:

n Common Pitfalls: A list of common mistakes that are made and how to
avoid them.

n Programming Style Guidelines: To encourage “good” programs that

others can actually understand, the programming chapters will have
guidelines that make programs easier to read and understand and

therefore easier to work with and modify.

n Key Terms: A list of the key terms covered in the chapter, in sequence.
n MATLAB Reserved Words: A list of the reserved key words in MATLAB.

Throughout the text, these are shown in bold, underlined type.

n MATLAB Functions and Commands: A list of the MATLAB built-in
functions and commands covered in the chapter, in the order covered.

Throughout the text, these are shown in bold type.

n MATLAB Operators: A list of the MATLAB operators covered in the
chapter, in the order covered.

n Exercises: A comprehensive set of exercises, ranging from the rote tomore

engaging applications.

xviii Preface

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

ADDITIONAL BOOK RESOURCES

A companion website with additional teaching resources is available for faculty

using this book as a text for their course(s). Please visit https://educate.elsevier.
com/book/details/9780323917506 to register for access to:

n Instructor solutions manual for end of chapter problems

n Instructor solutions manual for “Practice” problems
n Electronic figures from the text for creation of lecture slides

n Downloadable code files for all examples in the text

Other book-related resources will also be posted there from time to time.

MATHWORKS® CONTACT INFORMATION

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA

Tel: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com

xixPreface

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This page intentionally left blank

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Acknowledgments

I am indebted to many, many family members, colleagues, mentors, and

students.

Throughout the last 31 years of coordinating and teaching the basic computa-
tion courses for the College of Engineering at Boston University, I have been

blessed with many fabulous students, graduate teaching fellows, and under-

graduate teaching assistants (TAs). There have been hundreds of TAs over
the years, toomany to name individually, but I thank them all for their support.

In particular, the following TAs were very helpful in reviewing drafts of the
original manuscript and subsequent editions and suggesting examples: Edy

Tan, Megan Smith, Brandon Phillips, Carly Sherwood, Ashmita Randhawa,

Kevin Ryan, Brian Hsu, Paul Vermilion, Ben Duong, Carlton Duffett, Raaid
Arshad, Ben Corn, and Leah Gaeta. Kevin Ryan wrote the MATLAB scripts that

have been used to produce the cover illustrations.

Many colleagues have been very encouraging throughout the years. In
particular, I would like to thank Tom Bifano and Ron Roy for their support

and motivation. I am also indebted to my mentors at Boston University, Bill

Henneman of the Computer Science Department, Merrill Ebner of the Depart-
ment of Manufacturing Engineering, and Bob Cannon from the University of

South Carolina.

I would like to thank all of the reviewers of the proposal and drafts of this book.

Their comments have been extremely helpful, and I hope I have incorporated

their suggestions to their satisfaction. They includeMaheshAggarwal, Professor,
GannonUniversity; Marko V. Lubarda, Assistant Teaching Professor, University

of California San Diego; and Yunwei Xu, Lecturer/Undergraduate Advisor,

University of North Texas.

Also, I thank those at Elsevier who helped to make this book possible including

Katey Bircher, Publisher; Steve Merken, Sr. Acquisitions Editor; Chris Hockaday
andNaomi Robertson, Editorial ProjectManager; Alice Grant, Sr. Content Devel-

opment Specialist; and Kamatchi Madhavan, Production Project Manager. xxi

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

I would like to also thank the following people from MathWorks: Naomi

Fernandes, Dr Julia Hoerner, Michelle Hirsch, David Garrison, and
Heather Gorr.

Much of the material in this edition of the book has been produced during a
pandemic. I would be remiss in not crediting several restaurants for feeding

and sustaining me during these trying times. A lot of this work was done at

my camp in Maine. Thanks to Kim and Mike at Spring Creek BBQ in Monson,
Maine, for their wonderful food and hospitality, picked up on the way to camp.

Very special thanks also to all of the fabulous people at Big Tree Hospitality in

Portland, Maine, including the restaurants Eventide and Eventide Fenway
(in Boston), (the ghost) XO Burgers and Wings, and the catering/grocery

arm at Big Tree Foods. Most of my groceries during this crazy time came in

the form of takeout from these great establishments, and I have really valued
not only the sustenance but also the truly wonderful hospitality and friendship.

Thank you all!! You really helped me get through this.

Finally, thanks go to all of my family, especially my parents, Roy Attaway and

Jane Conklin, both of whom encouragedme at an early age to read and to write.

Thanks also to my husband, Ted de Winter, for his encouragement.

The photo used in the image processing section was taken by Ron Roy.

xxii Acknowledgments

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

1PART

Introduction to Programming
Using MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This page intentionally left blank

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

CHAPTER 1

Introduction to MATLAB®

KEY TERMS

prompt

programs

script files

toolstrip

variable

assignment statement

assignment operator

user

initializing

incrementing

decrementing

identifier names

reserved words

keywords

mnemonic

types

classes

double precision

floating point

unsigned

characters

character vectors

strings

default

continuation operator

ellipsis

unary

operand

binary

scientific notation

exponential notation

precedence

associativity

nested parentheses

inner parentheses

call a function

arguments

returning values

tab completion

constants

random numbers

seed

pseudorandom

open interval

global stream

character encoding

character set

relational expression

Boolean expression

logical expression

relational operators

logical operators

scalars

short-circuit operators

truth table

commutative

roundoff errors

range

casting

type casting

saturation arithmetic

locale setting

logarithm

common logarithm

natural logarithm

appending

MATLAB® is a very powerful software package that has many built-in tools for

solving problems and developing graphical illustrations. The simplest method
for using the MATLAB product is interactive; an expression is entered by the

user andMATLAB responds immediately with a result. It is also possible towrite

scripts and programs in MATLAB, which are essentially groups of commands
that are executed sequentially.

CONTENTS

1.1 Getting into
MATLAB4

1.2 The MATLAB
Desktop
Environment .5

1.3 Variables and
Assignment
Statements ...6

1.4 Numerical
Expressions 11

1.5 Characters and
Strings18

1.6 Relational
Expressions 18

1.7 Type Ranges
and Type
Casting23

1.8 Built-in
Numerical
Functions ...26

1.9 Using Mat-files
for Variables 28

1.10 Additional
MATLAB
Products29

Summary33

Common Pitfalls 33

Programming Style
Guidelines34

MATLAB. https://doi.org/10.1016/B978-0-323-91750-6.00001-9

3

Copyright © 2023 Elsevier Inc. All rights reserved.

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This chapter will focus on the basics, including many operators and built-in

functions that can be used in interactive expressions.

1.1 GETTING INTO MATLAB

MATLAB is a mathematical and graphical software package with numerical,
graphical, and programming capabilities. It includes an integrated develop-

ment environment, as well as both procedural and object-oriented program-

ming capabilities. It has built-in functions to perform many operations, and
there are toolboxes that can be added to augment these functions (e.g., for sig-

nal processing or machine learning). There are versions available for different

hardware platforms, in both professional and student editions. MathWorks
releases two versions ofMATLAB annually, named by the year and ‘a’ or ‘b’. This

book covers the releases through Version R2021b. In cases in which there have

been changes in recent years, these are noted.

When the MATLAB software is started, a window opens in which the main part
is the Command Window. See Fig. 1.1 for the configuration as of R2021b. In

the Command Window, you should see:

>>

The >> is called the prompt. In the Student Edition, the prompt instead is:

EDU>>

FIGURE 1.1

MATLAB Command Window.

4 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

In the Command Window, MATLAB can be used interactively. At the prompt,

any MATLAB command or expression can be entered, and MATLAB will
respond immediately with the result.

It is also possible to write programs in MATLAB that are contained in script files

or MATLAB code files. Programs will be introduced in Chapter 3.

The following commands can serve as an introduction to MATLAB and allow

you to get help:

n doc brings up a documentation page in the online documentation
n help explains any function; help help will explain how help works

n demo brings up MATLAB examples in the documentation, which has

examples of some of the features of MATLAB
n lookfor searches through the help for a specific word or phrase

(Note: this can result in a long list)

The doc pages contain more detailed information than help.

To exit fromMATLAB, either type quit or exit at the prompt, or click on the red
“x” button.

1.2 THE MATLAB DESKTOP ENVIRONMENT

In addition to the CommandWindow, there are several other windows that can
be opened and may be opened by default. What is described here is the default

layout for these windows in Version R2021b, although there are other possible

configurations. Different versions of MATLAB may show other configurations
by default, and the layout can always be customized. Therefore, the main fea-

tures will be described briefly here.

To the left of the CommandWindow is the Current Folder Window. The folder

that is set as the Current Folder is where files will be saved. This window shows

the files that are stored in the Current Folder. These can be grouped in many
ways, for example by type, and sorted, for example by name. If a file is selected,

information about that file is shown underneath the list.

To the right of the Command Window are the Workspace Window on top and
the Command History Window on the bottom. The Command History Win-

dow shows commands that have been entered, not just in the current session

(in the current Command Window), but previously as well. The Workspace
Window will be described in the next section.

This default configuration can be altered by clicking the down arrow at the top
right corner of each window. This will show a menu of options (different for

each window), including, for example, closing that particular window and

51.2 The MATLAB Desktop Environment

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

undocking that window. To make any of these windows the active window,

click the mouse in it. By default, the active window is the Command Window.

The Desktop has a toolstrip. By default, three tabs are shown: “HOME”,

“PLOTS”, and “APPS”.

Under the “HOME” tab there are many useful features, which are divided into

functional sections “FILE”, “VARIABLE”, “CODE”, “ENVIRONMENT”, and

“RESOURCES” (these labels can be seen on the very bottom of the gray tool-
strip area). For example, under “ENVIRONMENT”, hitting the down arrow

under Layout allows for customization of the windows within the Desktop

Environment. Other toolstrip features will be introduced in later chapters when
the relevant material is explained.

1.3 VARIABLES AND ASSIGNMENT STATEMENTS

To store a value in a MATLAB session, or in a program, a variable is used. The

Workspace Window shows variables that have been created and their values.
One easy way to create a variable is to use an assignment statement. The format

of an assignment statement is

variablename = expression

The variable is always on the left, followed by the¼ symbol, which is the assign-

ment operator (unlike in mathematics, the single equal sign does not mean
equality), followed by an expression. The expression is evaluated and then that

value is stored in the variable. Here is an example and how it would appear in

the Command Window:

>> mynum = 6
mynum =

6
>>

Here, the user (the person working in MATLAB) typed “mynum ¼ 6” at the

prompt, and MATLAB stored the integer 6 in the variable called mynum, and
then displayed the result followed by the prompt again. Because the equal sign

is the assignment operator, and does not mean equality, the statement should

be read as “mynum gets the value of 6” (not “mynum equals 6”).

Note that the variable name must always be on the left, and the expression on
the right. An error will occur if these are reversed.

>> 6 = mynum
6 = mynum

"
Incorrect use of '=' operator. Assign a value to a variable

using '=' and compare values for equality using '=='.
>>

6 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Putting a semicolon at the end of a statement suppresses the output. For

example,

>> res = 9 – 2;
>>

This would assign the result of the expression on the right side, the value 7, to

the variable res; it just does not show that result. Instead, another prompt
appears immediately. However, at this point in the Workspace Window, both

the variables mynum and res and their values can be seen.

The spaces in a statement or expression do not affect the result, but make it eas-

ier to read. The following statement, which has no spaces, would accomplish
exactly the same result as the previous statement:

>> res=9–2;

MATLAB uses a default variable named ans, if an expression is typed at the

prompt and it is not assigned to a variable. For example, the result of the expres-
sion 6 + 3 is stored in the variable ans:

>> 6 + 3
ans =

9

This default variable, ans, is reused any time that only an expression, not an

assignment statement, is typed at the prompt.

A shortcut for retyping commands is to hit the up arrow ", which will go

back to the previously typed command(s). For example, if you decide
to assign the result of the expression 6 + 3 to a variable named result

instead of using the default variable ans, you could hit the up arrow and then

the left arrow to modify the command rather than retyping the entire
statement:

>> result = 6 + 3
result =

9

This is very useful, especially if a long expression is entered and it contains an
error, and it is desired to go back to correct it.

It is also possible to choose command(s) in the Command History Window
and to re-run them by right-clicking and choosing Evaluate Selection. Consec-

utive commands can be chosen by clicking on the first or last and then holding

down the Shift and up or down arrows.

To change a variable, another assignment statement can be used, which assigns
the value of a different expression to it. Consider, for example, the following

sequence of statements:

Note

that in the remainder of

the book, the prompt that

appears after the result

will not be shown. What

the user types will be

shown in italics.

Note

that it is not a good idea to

use ans as a name your-

self or in expressions.

71.3 Variables and Assignment Statements

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> mynum = 3
mynum =

3
>> mynum = 4 + 2
mynum =

6
>> mynum = mynum + 1
mynum =

7

In the first assignment statement, the value 3 is assigned to the variablemynum.

In the next assignment statement, mynum is changed to have the value of the
expression 4+2, or 6. In the third assignment statement, mynum is changed

again, to the result of the expression mynum + 1. Because at that time mynum

had the value 6, the value of the expression was 6+1, or 7.

At that point, if the expression mynum+3 is entered, the default variable ans is
used since the result of this expression is not assigned to a variable. Thus, the

value of ans becomes 10 but mynum is unchanged (it is still 7). Just typing the

name of a variable will display its value (the value can also be seen in theWork-
space Window).

>> mynum + 3
ans =

10

>> mynum
mynum =

7

1.3.1 Initializing, Incrementing, and Decrementing

Frequently, values of variables change, as shown previously. Putting the first or
initial value in a variable is called initializing the variable.

Adding to a variable is called incrementing. For example, the statement

mynum = mynum + 1;

increments the variable mynum by 1.

QUICK QUESTION!

How can 1 be subtracted from the value of a variable

called num?

Answer: num = num – 1;

This is called decrementing the variable.

Note

that the value can also be

seen in the Workspace

Window. Also, by clicking

on the down arrow in the

Workspace Window, and

choosing Choose Col-

umns, additional infor-

mation can be seen for

each variable.

8 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

1.3.2 Variable Names

Variable names are an example of identifier names. We will see other examples
of identifier names, such as function names, in future chapters. The rules for

identifier names are as follows:

n The name must begin with a letter of the alphabet. After that, the name

can contain letters, digits, and the underscore character (e.g., value_1), but
it cannot have a space.

n There is a limit to the length of the name; the built-in function

namelengthmax tells what this maximum length is (any extra characters
are truncated).

n MATLAB is case-sensitive, which means that there is a difference between

upper and lowercase letters. So, variables called mynum, MYNUM, and
Mynum are all different (although this would be confusing and should

not be done).

n Although underscore characters are valid in a name, their use can cause
problems with some programs that interact with MATLAB, so some

programmers use mixed case instead (e.g., partWeights instead of

part_weights)
n There are certain words called reserved words, or keywords, that cannot be

used as variable names.

n Names of built-in functions (described in the next section) can, but
should not, be used as variable names.

Additionally, variable names should always be mnemonic, which means that
they should make some sense. For example, if the variable is storing the

radius of a circle, a name such as radius would make sense; x probably

would not.

The following commands relate to variables:

n who shows variables that have been defined in this Command Window

(this just shows the names of the variables)

n whos shows variables that have been defined in this Command Window
(this shows more information on the variables, similar to what is in the

Workspace Window)

n clearvars clears out all variables so that they no longer exist
n clearvars variablename clears out a particular variable

n clearvars variablename1 variablename2 … clears out a list of variables

(note: separate the names with spaces, not commas)
n clear is similar to clearvars but also clears out functions

If nothing appears when who or whos is entered, that means there are not any

variables! For example, in the beginning of a MATLAB session, variables could

91.3 Variables and Assignment Statements

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

be created and then selectively cleared (remember that the semicolon sup-

presses output).

>> who
>> mynum =3;
>> mynum +5;
>> who
Your variables are:
ans mynum
>> clear mynum
>> who
Your variables are:
ans

These changes can also be seen in the Workspace Window.

1.3.3 Types

Every variable has a type associated with it. MATLAB supports many types,

which are called classes. (Essentially, a class is a combination of a type and
the operations that can be performed on values of that type, but, for simplicity,

we will use these terms interchangeably for now. More on classes will be cov-

ered in Chapter 11.)

For example, there are types to store different kinds of numbers. For float or real

numbers, or in other words numbers with a decimal place (e.g., 5.3), there are
two basic types: single and double. The name of the type double is short for

double precision; it stores larger numbers than the single type. MATLAB uses a

floating point representation for these numbers.

There are many integer types, such as int8, int16, int32, and int64. The num-

bers in the names represent the number of bits used to store values of that type.

For example, the type int8 uses eight bits altogether to store the integer and its
sign. As one bit is used for the sign, this means that seven bits are used to store

actual numbers (0s or 1s). There are also unsigned integer types uint8, uint16,

uint32, and uint64. For these types, the sign is not stored, meaning that the
integer can only be positive (or 0).

The larger the number in the type name, the larger the number that can be
stored in it. We will for the most part use the type int32 when an integer type

is required.

By default, numbers are stored as the type double in MATLAB. The function

class can be used to see the type of any variable:

>> num = 6 + 3;
>> class(num)
ans =

'double'

10 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The type char is used to store either single characters (e.g., ‘x’) or character

vectors, which are sequences of characters (e.g., ‘cat’). Both characters and char-
acter vectors are enclosed in single quotes.

The type string is used to store strings (e.g., “hello”). Strings are enclosed in
double quotes.

The type logical is used to store true/false values.

The class of a variable can be shown in the Workspace Window.

1.4 NUMERICAL EXPRESSIONS

Expressions can be created using values, variables that have already been cre-

ated, operators, built-in functions, and parentheses. For numbers, these can
include operators such as multiplication and functions such as trigonometric

functions. An example of such an expression is:

>> 2 * sin(1.4)
ans =

1.9709

1.4.1 The Format Command and Ellipsis

The default in MATLAB is to display numbers that have decimal points with

four decimal places, as shown in the previous example. (The default means
if you do not specify otherwise, this is what you get.) The format command

can be used to specify the output format of expressions.

There are many options, including making the format short (the default) or

long. For example, changing the format to longwill result in 15 decimal places.
This will remain in effect until the format is changed back to short, as demon-

strated in the following.

>> format long
>> 77/888
ans =

0.086711711711712
>> format short
>> 77/888
ans =

0.0867

The format command can also be used to control the spacing between the

MATLAB command or expression and the result; it can be either loose (the

default) or compact.

>> format loose
>> 5*33

111.4 Numerical Expressions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

ans =

165

>> format compact
>> 5*33
ans =

165
>>

Especially long expressions can be continued on the next line by typing three

(or more) periods, which is the continuation operator, or the ellipsis. To do this,

type part of the expression followed by an ellipsis, then hit the Enter key and
continue typing the expression on the next line.

>> 3 + 55 – 62 + 4 – 5 ...
+ 22 – 1

ans =

16

1.4.2 Operators

There are in general two kinds of operators: unary operators, which operate on a

single value, or operand; and binary operators, which operate on two values or

operands. The symbol “-”, for example, is both the unary operator for negation
and the binary operator for subtraction.

Here are some of the common operators that can be used with numerical

expressions:

+ addition
– negation, subtraction
* multiplication
/ division (divided by e.g., 10/5 is 2)
\ division (divided into e.g., 5\10 is 2)
^ exponentiation (e.g., 5^2 is 25)

In addition to displaying numbers with decimal points, numbers can

also be shown using scientific or exponential notation. This uses e for the
exponent of 10 raised to a power. For example, 2 * 10 ^ 4 could be written

two ways:

>> 2 * 10^4
ans =

20000
>> 2e4
ans =

20000

12 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

1.4.2.1 Operator Precedence Rules
Some operators have precedence over others. For example, in the expression

4 + 5 * 3, the multiplication takes precedence over the addition, so first 5 is
multiplied by 3, then 4 is added to the result. Using parentheses can change

the precedence in an expression:

>> 4 + 5 * 3
ans =

19
>> (4 + 5) * 3
ans =

27

Within a given precedence level, the expressions are evaluated from left to right

(this is called associativity).

Nested parentheses are parentheses inside of others; the expression in the inner

parentheses is evaluated first. For example, in the expression 5–(6*(4+2)), first
the addition is performed, then the multiplication, and finally the subtraction,

to result in –31. Parentheses can also be used simply to make an expression

clearer. For example, in the expression ((4+(3*5))–1), the parentheses are
not necessary but are used to show the order in which the parts of the expres-

sion will be evaluated.

For the operators that have been covered thus far, the following is the prece-
dence (from the highest to the lowest):

() parentheses
^ exponentiation
– negation
*, /, \ all multiplication and division
+, – addition and subtraction

PRACTICE 1.1

Think about what the results would be for the following expressions, and then type them in to

verify your answers:

1\2

– 5 ^ 2

(–5) ^ 2

10–6/2

5*4/2*3

1.4.3 Built-in Functions and Help

There are many built-in functions in MATLAB. The help and the doc com-

mands can be used to identify MATLAB functions, and how to use them.

131.4 Numerical Expressions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

To find out what a particular function does and how to call it, type help and

then the name of the function. For example, the following will give a descrip-
tion of the sin function.

>> help sin

The doc page provides more information and examples:

>> doc sin

Also, to see lists of functions, either just type doc or choose the Help button

under Resources. Then, choose MATLAB, and then on top choose the Functions
tab. This will bring up a long list of all of the MATLAB functions, by category.

To call a function, the name of the function is given followed by the argument(s)

that are passed to the function in parentheses. Most functions then return

value(s). For example, to find the absolute value of -4, the following expression
would be entered:

>> abs(–4)

which is a call to the function abs. The number in the parentheses, the –4, is the
argument. The value 4 would then be returned as a result.

QUICK QUESTION!

What would happen if you used the name of a function, for

example, abs, as a variable name?

Answer: This is allowed in MATLAB, but then abs could not

be used as the built-in function until the variable is cleared

(using either clear or clearvars). For example, examine the

following sequence:

>> clearvars

>> abs(-6)

ans =

6

>> abs = 11

abs =

11

>> abs(–6)

Array indices must be positive integers or

logical values.

'abs' appears to be both a function and a

variable. If this is unintentional, use

'clear abs' to remove the variable 'abs' from

the workspace.

>> who

Your variables are:

abs ans

>> clear abs

>> who

Your variables are:

ans

>> abs(–6)

ans =

6

14 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

All of the operators have a functional form. For example, 2+5 can be written

using the plus function as follows.

>> plus(2,5)
ans =

7

MATLAB has a useful shortcut that is called the tab completion feature. If you

type the beginning characters in the name of a function, and hit the tab key,

a list of functions that begin with the typed characters pop up. Capitalization
errors are automatically fixed.

Also, if a function name is typed incorrectly, MATLAB will suggest a correct

name.

>> abso(–4)
Unrecognized function or variable 'abso'.
Did you mean:
>> abs(–4)

1.4.4 Constants

Variables are used to store values that might change, or for which the values are

not known ahead of time. Most languages also have the capacity to store con-

stants, which are values that are known ahead of time and cannot possibly

change. An example of a constant value would be pi, or π, which is

3.14159… In MATLAB, there are functions that return some of these constant
values, some of which include the following:

pi 3.14159….
i

ffiffiffiffiffiffiffi�1
p

j
ffiffiffiffiffiffiffi�1

p
inf infinity ∞
NaN stands for “not a number,” such as the result of 0/0

Frequently, missing data from files are read into MATLAB as NaN.

1.4.5 Random Numbers

When a program is being written to work with data, and the data are not yet

available, it is often useful to test the program first by initializing the data vari-

ables to random numbers. Random numbers are also useful in simulations.
There are several built-in functions in MATLAB that generate random numbers,

some of which will be illustrated in this section.

151.4 Numerical Expressions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Random number generators or functions are not truly random. Basically, the

way it works is that the process starts with one number, which is called the seed.
Frequently, the initial seed is either a predetermined value or it is obtained from

the built-in clock in the computer. Then, based on this seed, a process deter-

mines the next “random number.” Using that number as the seed the next time,
another random number is generated, and so forth. These are actually called

pseudorandom. They are not truly random because there is a process that deter-

mines the next value each time.

The function rand can be used to generate uniformly distributed random real

numbers; calling it generates one random real number in the open interval

(0,1), which means that the endpoints of the range are not included. There
are no arguments passed to the rand function in its simplest form. Here are

two examples of calling the rand function:

>> rand
ans =

0.8147
>> rand
ans =

0.9058

The seed for the rand function will always be the same each time MATLAB is

started, unless the initial seed is changed. The rng function sets the initial seed.
There are several ways in which it can be called:

>> rng('shuffle')
>> rng(intseed)
>> rng('default')

With ‘shuffle’, the rng function uses the current date and time that are returned

from the built-in clock function to set the seed, so the seed will always be dif-

ferent. An integer can also be passed to be the seed. The ‘default’ option will set
the seed to the default value used whenMATLAB starts up. The rng function can

also be called with no arguments, which will return the current state of the

random number generator:

>> state_rng = rng; % gets state
>> randone = rand
randone =

0.1270
>> rng(state_rng); % restores the state
>> randtwo = rand % same as randone
randtwo =

0.1270

The random number generator is initialized when MATLAB starts, which

generates what is called the global stream of random numbers. All of the

random functions get their values from this stream.

Note

the words after the % are

comments and are

ignored by MATLAB.

16 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

As rand returns a real number in the open interval (0, 1), multiplying the result

by an integer Nwould return a random real number in the open interval (0, N).
For example, multiplying by 10 returns a real in the open interval (0, 10), so the

expression

rand*10

would return a result in the open interval (0, 10).

To generate a random real number in the range from low to high, first create the

variables low and high. Then, use the expression rand*(high-low)+low. For
example, the sequence

>> low = 3;
>> high = 5;
>> rand*(high–low)+low

would generate a random real number in the open interval (3, 5).

The function randn is used to generate normally distributed random real

numbers.

1.4.5.1 Generating Random Integers
As the rand function returns a real number, this can be rounded to produce

a random integer. For example,

>> round(rand*10)

would generate one random integer in the range from0 to 10 inclusive (rand*10
would generate a random real in the open interval (0, 10); rounding that will

return an integer). However, these integers would not be evenly distributed in

the range. A better method is to use the function randi, which in its simplest
form randi(imax) returns a random integer in the range from 1 to imax, inclu-

sive. For example, randi(4) returns a random integer in the range from 1 to 4.

A range can also be passed, for example, randi([imin, imax]) returns a random
integer in the inclusive range from imin to imax:

>> randi([3, 6])
ans =

5

PRACTICE 1.2

Generate a random

n real number in the range (0,1)

n real number in the range (0, 100)

n real number in the range (20, 35)

n integer in the inclusive range from 1 to 100

n integer in the inclusive range from 20 to 35

171.4 Numerical Expressions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

1.5 CHARACTERS AND STRINGS

A character in MATLAB is represented using single quotes (e.g., ‘a’ or ‘x’). The

quotes are necessary to denote a character; without them, a letter would be
interpreted as a variable name. MATLAB also handles character vectors, which

are sequences of characters in single quotes, and strings, which are sequences

of characters in double quotes.

>> myword = 'hello'
myword =

'hello'
>> yourword = "ciao"
yourword =

"ciao"

Characters are put in an order using what is called a character encoding. In the
character encoding, all characters in the computer’s character set are placed in a

sequence and given equivalent integer values. The character set includes all

letters of the alphabet, digits, and punctuation marks; basically, all of the keys
on a keyboard are characters. Special characters, such as the Enter key, are also

included. Therefore, ‘x’, ‘!’, and ‘3’ are all characters. With quotes, ‘3’ is a

character, not a number.

The most common character encoding is the American Standard Code for

Information Interchange, or ASCII. Standard ASCII has 128 characters,
which have equivalent integer values from 0 to 127. The first 32 (integer

values 0 through 31) are nonprinting characters. The letters of the alphabet

are in order, which means ‘a’ comes before ‘b’, then ‘c’, and so forth.
MATLAB actually can use a much larger encoding sequence, which has the

same first 128 characters as ASCII. More on the character encoding, and

converting characters to their numerical values, will be covered in
Section 1.7.

1.6 RELATIONAL EXPRESSIONS

Expressions that are conceptually either true or false are called relational expres-

sions; they are also sometimes called Boolean expressions or logical expressions.

These expressions can use both relational operators, which relate two expres-
sions of compatible types, and logical operators, which operate on logical

operands.

18 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The relational operators in MATLAB are:

All of these concepts should be familiar, although the actual operators used
may be different from those used in other programming languages, or in math-

ematics classes. In particular, it is important to note that the operator for equal-

ity is two consecutive equal signs, not a single equal sign (as the single equal
sign is already used as the assignment operator).

For numerical operands, the use of these operators is straightforward. For exam-

ple, 3 < 5 means “3 less than 5”, which is, conceptually, a true expression. In
MATLAB, as in many programming languages, “true” is represented by the log-

ical value 1, and “false” is represented by the logical value 0. Therefore, the

expression 3 < 5 actually displays in the Command Window the value 1
(logical) in MATLAB. Displaying the result of expressions like this in the Com-

mand Window demonstrates the values of the expressions.

>> 3 < 5
ans =

logical
1

>> 2 > 9
ans =

logical
0

>> class(ans)
ans =

'logical'

The type of the result is logical, not double. MATLAB also has built-in true and
false functions.

>> true
ans =

logical
1

Operator Meaning

> greater than

< less than

>¼ greater than or equals

<¼ less than or equals

¼¼ equality

�¼ inequality

191.6 Relational Expressions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

In other words, true is equivalent to logical 1 and false is equivalent to

logical 0.

The output in the Command Window shows a header for most classes except

for the default number type double, char, and string. If the type of a number
result is not the default of double, the type (or class) is shown above the

resulting value, as in the underlined “logical” in the previous expressions.

However, to save room, these types will frequently not be shown for the rest
of the book.

Although these are logical values, mathematical operations could

be performed on the resulting 1 or 0 (which would result in the type

double).

>> logresult = 5 < 7
logresult =

1
>> logresult + 3
ans =

4

Comparing characters (e.g., ‘a’ < ‘c’) is also possible. Characters are
compared using their ASCII equivalent values in the character encoding. There-

fore, ‘a’ < ‘c’ is a true expression because the character ‘a’ comes before the

character ‘c’.

>> 'a' < 'c'
ans =

1

The logical operators are:

All logical operators operate on logical or Boolean operands. Thenot operator is a

unary operator; the others are binary. The not operator will take a logical expres-
sion, which is true or false, and give the opposite value. For example, �(3 < 5) is

false as (3 < 5) is true. The or operator has two logical expressions as operands.

The result is true if either or both of the operands are true, and false only if both
operands are false. The and operator also operates on two logical operands. The

result of an and expression is true only if both operands are true; it is false if either

Note

the class names char and

string are not shown

because the class is

obvious from the single

quotes (for char) or dou-

ble quotes (for string).

Operator Meaning

jj or

&& and

� not

20 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

or both are false. The or/and operators shown here are used for scalars, or single

values. Other or/and operators will be explained in Chapter 2.

The jj and && operators in MATLAB are examples of operators that are known
as short-circuit operators. What this means is that if the result of the expression

can be determined based on the first part, then the second part will not even be

evaluated. For example, in the expression:

2 < 4 jj 'a' == 'c'

the first part, 2 < 4, is true so the entire expression is true; the second part

‘a’ ¼¼ ‘c’ would not be evaluated.

In addition to these logical operators, MATLAB also has a function xor, which is
the exclusive or function. It returns logical true if one (and only one) of the

arguments is true. For example, in the following only the first argument is true,

so the result is true:

>> xor(3 < 5, 'a' > 'c')
ans =

1

In this example, both arguments are true, so the result is false:

>> xor(3 < 5, 'a' < 'c')
ans =

0

Given the logical values of true and false in variables x and y, the truth

table (see Table 1.1) shows how the logical operators work for all combina-
tions. Note that the logical operators are commutative (e.g., x jj y is the same

as y jj x).
As with the numerical operators, it is important to know the operator prece-

dence rules. Table 1.2 shows the rules for the operators that have been covered
thus far in the order of precedence.

Table 1.1 Truth Table for Logical Operators

x y ~x x || y x && y xor(x,y)

true true false true true false

true false false true false true

false false true false false false

211.6 Relational Expressions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PRACTICE 1.3

Think about what would be produced by the following expressions, and then type them in to verify

your answers.

3 == 5 + 2

'b' < 'a' + 1

10 > 5 + 2

(10 > 5) + 2

'c' == 'd' – 1 && 2 < 4

'c' == 'd' – 1 jj 2 > 4

xor('c' == 'd' – 1, 2 > 4)

xor('c' == 'd' – 1, 2 < 4)

10 > 5 > 2

QUICK QUESTION!

Assume that there is a variable x that has been initialized.

What would be the value of the expression

3 < x < 5

if the value of x is 4? What if the value of x is 7?

Answer: The value of this expression will always be logical

true, or 1, regardless of the value of the variable x. Expres-

sions are evaluated from left to right. Therefore, first the

expression 3 < x will be evaluated. There are only two possi-

bilities: either this will be true or false, which means that

either the expression will have the logical value 1 or 0. Then,

the rest of the expression will be evaluated, which will be

either 1 < 5 or 0 < 5. Both of these expressions are true.

So, the value of x does not matter: the expression 3 < x < 5

would be true regardless of the value of the variable x. This

is a logical error; it would not enforce the desired range. If

we wanted an expression that was logical true only if x was

in the range from 3 to 5, we could write 3 < x && x < 5

(note that parentheses are not necessary).

Table 1.2 Operator Precedence Rules

Operators Precedence

parentheses: () Highest

power ^
unary: negation (–), not (~)

multiplication, division *,/,\

addition, subtraction +, –

relational <, <=, >, >=, ==, ~=

and &&

or || Lowest

22 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Note: be careful about using the equality and inequality operators with num-
bers. Occasionally, roundoff errors appear, which means that numbers are close

to their correct value but not exactly. For example, cos(pi/2) should be 0.

However, because of a roundoff error, it is a very small number but not exactly 0.

>> cos(pi/2)
ans =

6.1232e–17
>> cos(pi/2) == 0
ans =

0

1.7 TYPE RANGES AND TYPE CASTING

The range of a type, which indicates the smallest and largest numbers that can

be stored in the type, can be calculated. For example, the type uint8 stores 2^8
or 256 integers, ranging from 0 to 255. The range of values that can be stored in

int8, however, is from �128 to +127. The range can be found for any type by

passing the name of the type as a string or character vector (which means in
single quotes) to the functions intmin and intmax. For example,

>> intmin('int8 ')
ans =
–128

>> intmax('int8 ')
ans =

127

There are many functions that convert values from one type to another.
The names of these functions are the same as the names of the types.

These names can be used as functions to convert a value to that type. This is

called casting the value to a different type, or type casting. For example, to con-
vert a value from the type double, which is the default, to the type int32, the

function int32 would be used. Entering the assignment statement

>> val = 6 + 3;

would result in the number 9 being stored in the variable val, with the default

type of double, which can be seen in the Workspace Window. Subsequently,

the assignment statement

>> val = int32(val);

would change the type of the variable to int32 but would not change its value.
Here is another example using two different variables.

>> num = 6 + 3;
>> numi = int32(num);
>> whos

Name Size Bytes Class Attributes
num 1x1 8 double
numi 1x1 4 int32

Note

that whos shows the type

(class) of the variables

and the number of bytes

used tostore the value of a

variable. One byte is

equivalent to eight bits, so

thetype int32uses4bytes.

231.7 Type Ranges and Type Casting

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PRACTICE 1.4

n Calculate the range of integers that can be stored in the types int16 and uint16. Use intmin

and intmax to verify your results.

n Enter an assignment statement and view the type of the variable in the Workspace Window.

Then, change its type and view it again. View it also using whos.

There is also a function cast that can cast a variable to a particular

type. This has an option to cast a variable to the same type as another,
using ‘like’.

>> a = uint16(43);
>> b = 11;
>> whos

Name Size Bytes Class Attributes
a 1x1 2 uint16
b 1x1 8 double

>> b = cast(b,'like',a);
>> whos

Name Size Bytes Class Attributes
a 1x1 2 uint16
b 1x1 2 uint16

The numeric functions can also be used to convert a character to its equivalent

numerical value (e.g., double will convert to a double value, and int32
will convert to an integer value using 32 bits). For example, to convert the

character ‘a’ to its numerical equivalent, the following statement could be

used:

>> numequiv = double('a')
numequiv =

97

QUICK QUESTION!

What would happen if you go beyond the range for a particular

type? For example, the largest integer that can be stored in

int8 is 127, so what would happen if we type cast a larger inte-

ger to the type int8?

>> int8(200)

Answer: The value would be the largest in the range, in this

case 127. If, instead, we use a negative number that is smaller

than the lowest value in the range, its value would be -128.

This is an example of what is called saturation arithmetic.

>> int8(200)

ans =

127

>> int8(–130)

ans =

–128

24 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This stores the double value 97 in the variable numequiv, which shows that the

character ‘a’ is the 98th character in the character encoding (as the equivalent
numbers begin at 0). It does not matter which number type is used to convert

‘a’; for example,

>> numequiv = int32('a')

would also store the integer value 97 in the variable numequiv. The only

difference between these will be the type of the resulting variable (double in

the first case, int32 in the second).

The function char does the reverse; it converts from any number to the
equivalent character:

>> char(97)
ans =

'a'

As the letters of the alphabet are in order, the character ‘b’ has the equivalent

value of 98, ‘c’ is 99, and so on. Math can be done on characters. For example,
to get the next character in the character encoding, 1 can be added either to the

integer or the character:

>> numequiv = double('a');
>> char(numequiv + 1)
ans =

'b'

>> 'a' + 2
ans =

99

The first 128 characters are equivalent to the 128 characters in standard ASCII.

MATLAB uses an encoding, however, that has 65,535 characters. The characters
from 128 to 65,535 depend on your computer’s locale setting, which sets the

language for your interface; for example, ‘en_US’ is the locale for English in

the United States.

To shift the characters of a character vector “up” in the character encoding, an
integer value can be added to a character vector. For example, the following

expression will shift by one:

>> char('abcd' + 1)
ans =

'bcde'

The string function can be used to cast a character vector to a string.

>> word = string('hello')
word =

"hello"

251.7 Type Ranges and Type Casting

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PRACTICE 1.5

n Find the numerical equivalent of the character 'x'.

n Find the character equivalent of 107.

1.8 BUILT-IN NUMERICAL FUNCTIONS

There are many built-in numerical functions. Some will be listed here; others
can be found in the documentation.

MATLAB has many built-in trigonometric functions for sine, cosine, tangent,
and so forth. For example, sin is the sine function in radians. The inverse, or

arcsine function in radians is asin, the hyperbolic sine function in radians is

sinh, and the inverse hyperbolic sine function is asinh. There are also functions
that use degrees rather than radians: sind and asind. Similar variations exist for

the other trigonometric functions.

MATLAB also has some rounding and remainder functions that are very useful.
Some of these include fix, floor, ceil, round, mod, rem, and sign.

Both the rem andmod functions return the remainder fromadivision; for exam-

ple 5 goes into 13 twicewith a remainder of 3, so the result of this expression is 3:

>> rem(13,5)
ans =

3

The sign function returns 1 if the argument is positive, 0 if it is 0, and�1 if it is

negative. For example,

>> sign(–5)
ans =

–1

>> sign(3)
ans =

1

QUICK QUESTION!

What would happen if you reversed the order of the arguments

by mistake, and typed the following:

rem(5,13)

Answer: The rem function is an example of a function that

has two arguments passed to it. In some cases, the order in

which the arguments are passed does not matter, but for

the rem function the order does matter. The rem function

divides the second argument into the first. In this case, the

second argument, 13, goes into 5 zero times with a remainder

of 5, so 5 would be returned as a result.

26 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PRACTICE 1.6

Use help or doc to find out what the rounding functions fix, floor, ceil, and round do. Experiment

with them by passing different values to the functions, including some negative, some positive,

and some with fractions less than 0.5, and some greater. It is very important when testing functions

that you test thoroughly by trying different kinds of arguments!

The round function has an option to round to a specified number of digits.

>> round(pi,3)
ans =

3.1420

MATLAB has the exponentiation operator ^, and also the function sqrt to

compute square roots and nthroot to find the nth root of a number. For

example, the following expression finds the third root of 64.

>> nthroot(64,3)
ans =

4

For the case in which x¼ by, y is the logarithm of x to base b, or in other words,

y ¼ logb(x). Frequently used bases include b ¼ 10 (called the common loga-

rithm), b ¼ 2 (used in many computing applications), and b ¼ e (the constant
e, which equals 2.7183); this is called the natural logarithm. For example,

100 ¼ 102 so 2 ¼ log10(100)

32 ¼ 25 so 5 ¼ log2(32)

MATLAB has built-in functions to return logarithms:

log(x) returns the natural logarithm
log2(x) returns the base 2 logarithm

log10(x) returns the base 10 logarithm

MATLAB also has a built-in function exp(n), which returns the constant en.

Note

Do not confuse the value

e with the e used in

MATLAB to specify an

exponent for scientific

notation.

QUICK QUESTION!

There is no built-in constant for e (2.718), so how can that

value be obtained in MATLAB?

Answer: Use the exponential function exp; e or e1 is equiv-

alent to exp(1).

>> exp(1)

ans =

2.7183

271.8 Built-in Numerical Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

MATLAB also has some conversion functions, e.g., deg2rad and rad2deg to

convert between degrees and radians:

>> deg2rad(180)
ans =

3.1416

1.9 USING MAT-FILES FOR VARIABLES

MATLAB has functions that can both save variables to files, and read them

from files. These files are called MAT-files (because the extension on the file
name is .mat), and they store the names and contents of variables. Variables

can be written to new MAT-files, added to existing MAT-files (appending),

and read from them. Rather than just storing data, MAT-files store the variable
names in addition to their values. These files are typically used only within

MATLAB; they are not used to share data with other programs.

1.9.1 Writing Variables to a File

The save command can be used to write variables to a MAT-file, or to append

variables to a MAT-file. By default, the save function writes to a MAT-file, so the
.mat extension is not necessary. It can either save all variables that have been

created or a subset (including, e.g., just one variable). The save function will

save the MAT-file in the Current Folder, so it is important to set that
correctly first.

To save all variables to a file, the command is:

save filename

The ‘.mat’ extension is added to the filename automatically. The contents of the

file can be displayed using who with the ‘-file’ qualifier:

who –file filename

For example, in the following session in the Command Window, two variables
are created; these are then displayed usingwho. Then, the variables are saved to

a file named “sess1.mat”. Thewho function is then used to display the variables

stored in that file.

>> x = 33;
>> y = x – 11;
>> who
Your variables are:
x y

>> save sess1
>> who –file sess1
Your variables are:
x y

28 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

To save just one variable to a file, the format is

save filename variablename

For example, just the variable x is saved to a file called sess2:

>> save sess2 x
>> who –file sess2
Your variables are:
x

1.9.2 Appending Variables to a MAT-File

Appending to a file adds to what has already been saved in a file, and is accom-

plished using the –append option. For example, assuming that the variable
x has already been stored in the file “sess2.mat” as just shown, this would

append the variable y to the file:

>> save –append sess2 y
>> who –file sess2
Your variables are:
x y

Without specifying variable(s), just save –append would add all variables that

have been created to the file. When this happens, if the variable is not in the file,
it is appended. If there is a variable with the same name in the file, it is replaced

by the current value.

1.9.3 Reading From a MAT-file

The load functioncan loadall variables fromthe fileoronly a subset. For example,

in a newCommandWindow session inwhich no variables have yet been created,
the load function could load from the files created in the previous section:

>> who
>> load sess2
>> who
Your variables are:
x y

A subset of the variables in a file can be loaded by specifying them in the form:

load filename variable list

MATLAB has some built-inMAT-files that will be used in subsequent sections in
this book.

1.10 ADDITIONAL MATLAB PRODUCTS

MathWorks® has many products related to MATLAB, and several websites and
associated apps. To view the products, go to the official website:

https://www.mathworks.com

291.10 Additional MATLAB Products

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Clicking on Products will bring up a list of the products and services that are

available. These include many toolboxes to use with MATLAB. Additional ser-
vices include MATLAB® Mobile™, MATLAB® Online™, and MATLAB®

Drive™.

MATLAB® Mobile™ is a free app that is available for Android and Apple

devices. The interface provides a command prompt that allows you to enter

MATLAB commands and have them evaluated, just like in the Command Win-
dow. It also provides a history of commands. With MATLAB® Mobile™, you

can connect to MATLAB sessions running in the cloud using MATLAB®

Online™. Also available is a set of sensor data. Hitting the Sensors icon brings
up the ability to get data from the sensors that are built into your device. These

include Position (including Latitude and Longitude), Acceleration, and Orien-

tation (including Azimuth, Pitch, and Roll). By connecting your mobile device,
you can acquire and log the sensor data in MATLAB. For example, you could

take your device on a trip and then plot where it went! To do this, it is necessary

to download both the MATLAB® Mobile™ app and to download the sensor
package for your computer. The connector command connects the devices,

and the mobiledev function creates an object (more on objects in

Chapter 11) that is used to acquire the sensor data. Read the MATLAB®

Mobile™ documentation online for more details.

MATLAB®Online™was introduced in R2017a. Most MATLAB licenses include
access to MATLAB® Online™. No download is necessary, but you do need to

log in to a MathWorks account. MATLAB®Online™ is hosted on the cloud and

includes MATLAB and most toolboxes.

MATLAB® Drive™ provides cloud storage for MATLAB files (including for

MATLAB® Online™ and MATLAB® Mobile™), and is available with any Math-

Works account. It can be used for collaboration and sharing of files, and can be
synchronized with your desktop.

Also available through the website are options for practicing MATLAB code,
reading blogs, posting questions, and sharing code files. The Cody™ website,

found under Community, has a collection of problems that you can solve in

order to practice your skills with MATLAB. An offshoot of Cody™ is MATLAB®

Grader™, which is a website that allows instructors to post problems for stu-

dents to solve, and includes the ability for instructors to create auto-graders

for the students’ codes.

Data Science and Machine Learning Supplement
Introduction to Machine Learning
Machine Learning (ML) is becoming a very important topic in all fields.

Machine Learning combines Data Science (DS), Artificial Intelligence (AI),

30 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

probability and statistics, and computer coding and has broad applications.

With Machine Learning, data sets (frequently very large) are inputs into com-
puter programs, which then find patterns in the data in order to help us make

predictions. To begin learning about Machine Learning, there is a lot of back-

ground information, and a lot of terminology.

At the end of every chapter in this book, a fewML topics will be introduced that

are relevant to that chapter. The last chapter in the book, Chapter 15, builds on
these short sections and further introduces the discipline of Machine Learning

and Statistics and Machine Learning Toolbox™. By introducing topics gradu-

ally throughout the book, the goal is for the terminology to not be so intimi-
dating once the final chapter is reached. Also, these sections provide context for

the concepts from the chapters.

An algorithm is a sequence of steps taken in order to solve a problem. The algo-
rithm is then coded in a particular language (MATLAB for us!). With ML, there

are lots of different algorithms. They are basically categorized as Supervised

Learning and Unsupervised Learning.

With supervised learning, you want to be able to answer a question for which

you already have answers for some data. Classification algorithms predict cate-
gories for data, whereas regression algorithms predict continuous data (real

numbers). As an example of a classification algorithm, let us say you are creat-

ing a system that will classify an email as either spam or not. You have some
data in the form of emails that have already been classified as ‘spam’ or ‘not

spam’ (this is called labeled data). So, you have the input (the emails) and

the output (whether or not they are spam). This is actually a binary classifier,
in that it classifies in one of two categories. The basic idea is that you choose

a classification algorithm, and build a model. You use the data to train and test

your model, and once your model has the desired level of accuracy, you can
then use it to decide whether new email messages are spam or not. An example

of a regression algorithm might be predicting the average miles per gallon

(mpg) for cars. Again, you would have labeled data. This might consist of
the make of the car, model, country in which it is manufactured, weight, year,

etc., and you would have the known average mpg for these cars. You train your

model on this data and then use themodel to predict mpg for cars for which the
mpg is not known.

With unsupervised learning, you do not have labeled data. Instead, you want the
system to be able to find patterns that are not yet known. For example, you may

have a very large database of hospital patient information. You might feed that

into a ML algorithm so that it can discover correlations between features of the
patients (weight and heart disease, for example); these correlations can then be

used tomake predictions for other patients. These are called clustering algorithms

because they groupdata together in clusters based onpatterns that are discovered.

311.10 Additional MATLAB Products

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

To summarize, there are lots of different types of ML algorithms, and there are

hybrid combinations of algorithms. We will concentrate on:

n Supervised Learning:

n Classification algorithms that predict categories (e.g., spam/not spam)
n Regression algorithms that predict real numbers (e.g., miles per gallon)

n Unsupervised Learning:

n Clustering algorithms that group data into clusters based on patterns in
the data

Assessing Classification Model Performance
For a classification model, the algorithm either correctly classifies an observa-

tion, or it does not. For example, let us say that we have a simple binary clas-

sifier, such as amodel that classifies email as spam or not spam. For every email,
there are four possibilities:

n The email is spam and the model classified it as spam: this is a True
Positive (TP)

n The email is not spam and the model classified it as not spam: this is a

True Negative (TN)
n The email is spam and the model classified it as not spam: this is a False

Negative (FN)

n The email is not spam and the model classified it as spam: this is a False
Positive (FP)

Let us say that out of a data set of 280 emails, the results were: TP is 50, TN is

200, FN is 20, and FP is 10.

The model accuracy is the percentage of emails that were correctly classified,

which is the sum of the correct classifications (the sum of the TP and TN)
divided by the total number of emails. In this case, the accuracy is 250/280,

or 0.893, or 89.3%.

There are other metrics that are used to assess the performance of the model.
One other metric, the precision, measures how accurately the positive outcome

was predicted. The precision is the TP divided by the sum of TP+FP. In this case,

the precision was 50/60, or 0.833.

n Explore Other Interesting Features

This section lists some features and functions in MATLAB, related to those

explained in this chapter, that you wish to explore on your own.

n Workspace Window: There are many other aspects of the Workspace

window to explore. To try this, create some variables. Make the Work-
space window the active window by clicking the mouse in it. From there,

you can choose which attributes of variables to make visible by choosing

32 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Choose Columns from the menu. Also, if you double click on a variable
in the Workspace window, this brings up a Variable Editor window that

allows you to modify the variable.

n Use help to learn about the path function and related directory functions
such as addpath and which.

n The pow2 function.

n Functions related to type casting including typecast.
n Find the accuracy of the floating point representation for single and

double precision using the eps function.

n The sinpi and cospi functions, introduced in R2018b. n

SUMMARY

COMMON PITFALLS

It is common when learning to program to make simple spelling mistakes and
to confuse the necessary punctuation. Examples are given here of very common

errors. Some of these include:

n Putting a space in a variable name

n Confusing the format of an assignment statement as

expression = variablename

rather than

variablename = expression

The variable name must always be on the left.

n Using a built-in function name as a variable name, and then trying to use
the function

n Confusing the two division operators / and \

n Forgetting the operator precedence rules
n Confusing the order of arguments passed to functions – for example, to

find the remainder of dividing 3 into 10 using rem(3,10) instead of

rem(10,3)
n Not using different types of arguments when testing functions

n Forgetting to use parentheses to pass an argument to a function (e.g., “fix

2.3” instead of “fix(2.3)”). MATLAB returns the ASCII equivalent for
each character when this mistake is made (what happens is that it is

interpreted as the function of a string, “fix(‘2.3’)”).

n Confusing && and jj
n Confusing jj and xor

n Putting a space in 2-character operators (e.g., typing “< =” instead of “<=”)

n Using ¼ instead of == for equality

33Common Pitfalls

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PROGRAMMING STYLE GUIDELINES

Following these guidelines will make your code much easier to read and under-

stand, and therefore easier to work with and modify.

n Use mnemonic variable names (names that make sense; for example,

radius instead of xyz).
n Although variables named result and RESULT are different, avoid this as it

would be confusing.

n Do not use names of built-in functions as variable names.
n Store results in named variables (rather than using ans) if they are to be

used later.

n Do not use ans in expressions.
n Make sure variable names have fewer characters than namelengthmax.

n If different sets of random numbers are desired, set the seed for the

random functions using rng.

MATLAB Functions and Commands

doc
help
demo
lookfor
quit
exit
namelengthmax
who
whos
clearvars
clear
single
double
int8
int16
int32
int64
uint8

uint16
uint32
uint64
class
char
string
logical
true
false
format
sin
abs
plus
pi
i
j
inf
NaN

rand
rng
clock
randn
randi
xor
intmin
intmax
cast
asin
sinh
asinh
sind
asind
fix
floor
ceil
round

mod
rem
sign
sqrt
nthroot
log
log2
log10
exp
deg2rad
rad2deg
save
load
connector
mobiledev

MATLAB Operators

assignment ¼
ellipsis, or
continuation …

addition +
negation �
subtraction �

multiplication *
divided by /
divided into \
exponentiation ^
parentheses ()
greater than >

less than <

greater than or
equals >¼

less than or equals
<¼

equality ¼¼

inequality �¼
or for scalars jj
and for scalars &&
not �

34 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Exercises

1. Create a variable myage and store your age in it. Add 2 to the value of the

variable. Subtract 3 from the value of the variable. Observe the Workspace

Window and Command History Window as you do this.

2. Explain the difference between these two statements:

result = 9*2
result = 9*2;

3. Give the result of the expression 4 + 2 / 4 and explain how it is obtained.

4. Use the built-in function namelengthmax to find out the maximum number of

characters that you can have in an identifier name under your version of

MATLAB.

5. Create two variables to store a weight in pounds and ounces. Use who and

whos to see the variables. Use class to see the types of the variables. Clear one

of them using clearvars and then use who and whos again.

6. Explore the format command in more detail. Use help format to find options.

Experiment with format bank to display dollar values.

7. Find a format option that would result in the following output format:

>> 5/16 + 2/7
ans =

67/112

8. Think about what the results would be for the following expressions, and then

type them in to verify your answers.

13 – 2 * 5
4^2/2
3e2 – 5^2

9. There are 1.6093 kilometers in a mile. Create a variable to store a number of

miles. Convert this to kilometers, and store in another variable.

10. The following assignment statements either contain at least one error, or could

be improved in some way. Assume that radius is a variable that has been

initialized. First, identify the problem, and then fix and/or improve them:

33 = number
my variable = 11.11;
area = 3.14 * radius^2;
x = 2 * 3.14 * radius;

11. Experiment with the functional form of some operators such as plus, minus,

and times.

12. Explain the difference between constants and variables.

13. Generate a random

n real number in the range (0, 30)

n real number in the range (10, 100)

35Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n integer in the inclusive range from 1 to 20

n integer in the inclusive range from 0 to 20

n integer in the inclusive range from 30 to 80

14. Get into a new Command Window, and type rand to get a random real number.

Make a note of the number. Then, exit MATLAB and repeat this, again making a

note of the random number; it should be the same as before. Finally, exit

MATLAB and again get into a new Command Window. This time, change the

seed before generating a random number; it should be different.

15. What is the difference between x and ‘x’?

16. What is the difference between 5 and ‘5’?

17. Give the result of the following expression and explain how it is obtained:

3 – 5 * 2 == (3 – 5) * 2

18. Is the expression 2 < 6 < 4 the same as the expression (2 < 6) && (6 < 4)?

Why or why not?

19. Assuming that a variable x has been initialized, is the expression 5< x< 10 the

same as the expression (5 < x) && (x < 10)? Why or why not?

20. Create two variables x and y and store numbers in them. Write an expression

that would be true if the value of x is greater than five or if the value of y is less

than ten, but not if both of those are true.

21. In the ASCII character encoding, the letters of the alphabet are in order: ‘a’

comes before ‘b’ and also ‘A’ comes before ‘B’. However, which comes first -

lower or uppercase letters?

22. Are there equivalents to intmin and intmax for real number types? Use help to

find out.

23. Use intmin and intmax to determine the range of values that can be stored in

the types uint32 and uint64.

24. Use help elfun or experiment to answer the following questions:

n Is fix(3.5) the same as floor(3.5)?

n Is fix(3.4) the same as fix(�3.4)?

n Is fix(3.2) the same as floor(3.2)?

n Is fix(�3.2) the same as floor(�3.2)?

n Is fix(�3.2) the same as ceil(�3.2)?

25. For what range of values is the function round equivalent to the function floor?
For what range of values is the function round equivalent to the function ceil?

26. Use help or doc to determine the difference between the rem and mod

functions.

27. Use the equality operator to verify that log10(1000) is 3.

28. Explain why it is not necessary to know the integer equivalent of ‘?’ in order to

evaluate this expression:

char(int32('?'))

36 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

29. In special relativity, the Lorentz factor is a number that describes the effect of

speed on various physical properties when the speed is significant relative to

the speed of light. Mathematically, the Lorentz factor is given as:

γ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r

Use 3 � 108 m/s for the speed of light, c. Create variables for c and the speed

v and from them a variable lorentz for the Lorentz factor.

30. A company manufactures a part for which there is a desired weight. There

is a tolerance of N percent, meaning that the range between minus and plus

N% of the desired weight is acceptable. Create a variable that stores a weight,

and another variable for N (e.g., set it to 2). Create variables that store the

minimum and maximum values in the acceptable range of weights for

this part.

31. A chemical plant releases an amount A of pollutant into a stream. The

maximum concentration C of the pollutant at a point which is a distance x from

the plant is:

c¼A

x

ffiffiffiffiffiffiffiffi
2Q
e

s

Create variables for the values of A and x, and then for C. Assume that the

distance x is in meters. Experiment with different values for x.

32. The geometric mean g of n numbers xi is defined as the nth root of the

product of xi:

g¼ ffi
x1x2x3…xnn

p

(This is useful, for example, in finding the average rate of return for an

investment which is something you would do in engineering economics). If an

investment returns 15% the first year, 50% the second, and 30% the

third year, the average rate of return would be (1.15*1.50*1.30)⅓.)

Compute this.

33. Use the deg2rad function to convert 180 degrees to radians.

34. Create two variables and save the to a MAT-file. Clear the variables, and view

the from the file. Create another variable and append it to theMAT-file. Read all

variables from the MAT-file.

35. If you have an Apple or Android device, install MATLAB Mobile and investigate

the sensor information. This can be done without connecting the device to

MATLAB.

37Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Data Science and Machine Learning

36. For the results of a ML classification model, create variables storing values for

the TP, TN, FN, and FP. Let us say that TP is 50, TN is 200, FN is 20, and FP is 10.
Use these variables to determine the accuracy of the model, and also the

precision of the model.

37. For the results of a ML classification model, the False Positive Rate is:

FPR = FP / (FP + TN)

The True Positive Rate, also called the recall, is:

TPR = TP / (TP + FN)

Using your variables from the previous problem, calculate the FPR and recall.

38 CHAPTER 1: Introduction to MATLAB®

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

CHAPTER 2

Vectors and Matrices

KEY TERMS

vectors

matrices

row vector

column vector

scalar

elements

array

array operations

colon operator

iterate

step value

concatenating

index

subscript

index vector

transpose

square matrix

subscripted indexing

unwinding a matrix

linear indexing

column major order

columnwise

dimensions

vector of variables

empty vector

deleting elements

three-dimensional

matrices

cumulative sum

cumulative product

running sum

nesting calls

scalar multiplication

array operations

array multiplication

array division

logical vector

logical indexing

zero crossings

matrix multiplication

inner dimensions

outer dimensions

dot product

inner product

cross product

outer product

main diagonal

diagonal matrix

trace

identity matrix

symmetric matrix

MATLAB® is short for Matrix Laboratory. Everything in MATLAB is written to
work with vectors and matrices. This chapter will introduce vectors and matri-

ces. Operations on vectors and matrices and built-in functions that can be used

to simplify code will also be explained. The matrix operations and functions
described in this chapter will form the basis for vectorized coding, which will

be explained in Chapter 5.

2.1 VECTORS AND MATRICES

Vectors and matrices are used to store sets of values, all of which are the same
type. A matrix can be visualized as a table of values. The dimensions of a matrix

are r� c, where r is the number of rows and c is the number of columns. This is

CONTENTS

2.1 Vectors and
Matrices39

2.2 Vectors and
Matrices as
Function
Arguments ...56

2.3 Scalar and Array
Operations on
Vectors and
Matrices60

2.4 Logical
Vectors62

2.5 Matrix
Operations
and Matrix
Properties67

Summary76

Common
Pitfalls76

Programming Style
Guidelines77

MATLAB. https://doi.org/10.1016/B978-0-323-91750-6.00002-0

39

Copyright © 2023 Elsevier Inc. All rights reserved.

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

pronounced “r by c”. A vector can be either a row vector or a column vector. If a

vector has n elements, a row vector would have the dimensions 1 � n, and a
column vector would have the dimensions n � 1. A scalar (one value) has

the dimensions 1 � 1. Therefore, vectors and scalars are actually just special

cases of matrices.

Here are some diagrams showing, from left to right, a scalar, a column vector, a

row vector, and a matrix:

3 5 88 3 11 9 6 3
5 7 5 7 2

4

The scalar is 1 � 1, the column vector is 3 � 1 (three rows by one column), the

row vector is 1 � 4 (one row by four columns), and the matrix is 2 � 3 (two
rows by three columns). All of the values stored in these matrices are stored

in what are called elements.

MATLAB is written to work with matrices and so it is very easy to create vector
and matrix variables, and there are many operations and functions that can be

used on vectors and matrices.

A vector in MATLAB is equivalent to what is called a one-dimensional array in

other languages. A matrix is equivalent to a two-dimensional array. Usually,

even in MATLAB, some operations that can be performed on either vectors
or matrices are referred to as array operations. The term array is also frequently

used to mean generically either a vector or a matrix.

2.1.1 Creating Row Vectors

There are several ways to create row vector variables. The most direct way is to

put the values that you want in the vector in square brackets, separated by either
spaces or commas. For example, both of these assignment statements create the

same vector v:

>> v = [1 2 3 4]
v =

1 2 3 4

>> v = [1,2,3,4]
v =

1 2 3 4

Both of these create a row vector variable that has four elements; each value is

stored in a separate element in the vector. The vector is 1 � 4.

40 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

2.1.1.1 The Colon Operator and Linspace Function
If, as in the preceding examples, the values in the vector are regularly spaced, the

colon operator can be used to iterate through these values. For example, 2:6
results in all of the integers from 2 to 6 inclusive:

>> vec = 2:6
vec =

2 3 4 5 6

In this vector, there are five elements; the vector is a 1 � 5 row vector.

With the colon operator, a step value can also be specified by using another

colon, in the form (first:step:last). For example, to create a vector with all inte-
gers from 1 to 9 in steps of 2:

>> nv = 1:2:9
nv =

1 3 5 7 9

The linspace function creates a linearly spaced vector; linspace(x,y,n) creates a

vector with n values in the inclusive range from x to y. If n is omitted, the default
is 100 elements. For example, the following creates a vector with five values lin-

early spaced between 3 and 15, including the 3 and 15:

>> ls = linspace(3,15,5)
ls =

3 6 9 12 15

QUICK QUESTION!

What happens if adding the step value would go beyond the

range specified by the last, for example,

1:2:6

Answer: This would create a vector containing 1, 3, and 5.

Adding 2 to the 5 would go beyond 6, so the vector stops at

5; the result would be

1 3 5

QUICK QUESTION!

How can you use the colon operator to generate the vector

shown below?

9 7 5 3 1

Answer: 9:–2:1

The step value can be a negative number, so the resulting

sequence is in descending order (from highest to lowest).

Note

that in this case, the

brackets [] are not nec-

essary to define the

vector.

412.1 Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Similarly, the logspace function creates a logarithmically spaced vector;

logspace(x,y,n) creates a vector with n values in the inclusive range from
10x to 10y. If n is omitted, the default is 50 elements. For example,

logspace(1,4,4) creates a vector with four elements, logarithmically spaced

between 101 and 104, or in other words 101, 102, 103, and 104.

>> logspace(1,4,4)
ans =

10 100 1000 10000

Vector variables can also be created using existing variables. For example, a new

vector is created here consisting first of all of the values from nv followed by all

values from ls:

>> newvec = [nv ls]
newvec =

1 3 5 7 9 3 6 9 12 15

Putting two vectors together like this to create a new one is called concatenating

the vectors.

2.1.1.2 Referring to and Modifying Elements
The elements in a vector are numbered sequentially; each element number is
called the index, or subscript. In MATLAB, the indices start at 1. Normally, dia-

grams of vectors and matrices show the indices. For example, for the variable

newvec created earlier, the indices 1–10 of the elements are shown above the
vector:

1 2 3 4 5 6 7 8 9 10
1 3 5 7 9 3 6 9 12 15

newvec

A particular element in a vector is accessed using the name of the vector variable

and the index or subscript in parentheses. For example, the fifth element in the

vector newvec is a 9.

>> newvec(5)
ans =

9

The expression newvec(5) would be pronounced “newvec sub 5”, where sub is

short for the word subscript. A subset of a vector, which would be a vector itself,

can also be obtained using the colon operator. For example, the following state-
ment would get the fourth through sixth elements of the vector newvec and store

the result in a vector variable b:

>> b = newvec(4:6)
b =

7 9 3

42 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Any vector can be used for the indices into another vector, not just one created

using the colon operator. The indices do not need to be sequential. For exam-
ple, the following would get the first, tenth, and fifth elements of the vector

newvec:

>> newvec([1 10 5])
ans =

1 15 9

The vector [1 10 5] is called an index vector; it specifies the indices in the original
vector that are being referenced.

The value stored in a vector element can be changed by specifying the index or

subscript. For example, to change the second element from the preceding vector

b to now store the value 11 instead of 9:

>> b(2) = 11
b =

7 11 3

By referring to an index that does not yet exist, a vector can also be extended.

For example, the following creates a vector that has three elements. By then

assigning a value to the fourth element, the vector is extended to have four
elements.

>> rv = [3 55 11]
rv =

3 55 11

>> rv(4) = 2
rv =

3 55 11 2

If there is a gap between the end of the vector and the specified element, 0s are
filled in. For example, the following extends the variable rv again:

>> rv(6) = 13
rv =

3 55 11 2 0 13

Aswewill see later, this is actually not a good idea. It is not very efficient because

it can take extra time.

It is also possible to index into a character vector:

>> chararr = 'hello ';

>> chararr(2)
ans =

'e '

Indexing into strings is not quite as straight-forward and will be covered in

Chapter 7.

432.1 Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PRACTICE 2.1

Think about what would be produced by the following sequence of statements and expressions,

and then type them in to verify your answers:

pvec = 3:2:10

pvec(2) = 15

pvec(7) = 33

pvec([2:4 7])

linspace(5,11,3)

logspace(2,4,3)

2.1.2 Creating Column Vectors

One way to create a column vector is to explicitly put the values in square
brackets, separated by semicolons (rather than commas or spaces):

>> c = [1; 2; 3; 4]
c =

1
2
3
4

There is no direct way to use the colon operator to get a column vector. How-

ever, any row vector created using any method can be transposed to result in a
column vector. In general, the transpose of amatrix is a newmatrix in which the

rows and columns are interchanged. For vectors, transposing a row vector
results in a column vector, and transposing a column vector results in a row

vector. In MATLAB, the apostrophe (or single quote) is built in as the transpose

operator.

>> r = 1:3;

>> c = r 0

c =
1
2
3

2.1.3 Creating Matrix Variables

Creating a matrix variable is simply a generalization of creating row and col-
umn vector variables. That is, the values within a row are separated by either

spaces or commas, and the different rows are separated by semicolons. For

example, the matrix variable mat is created by explicitly entering values:

>> mat = [4 3 1; 2 5 6]
mat =

4 3 1
2 5 6

44 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

If you attempt to create a matrix in which there are different numbers of values
in the rows, the result will be an error message, such as in the following:

>> mat = [3 5 7; 1 2]
Error using vertcat
Dimensions of arrays being concatenated are not consistent.

Iterators can be used for the values in the rows using the colon operator. For
example:

>> mat = [2:4; 3:5]
mat =

2 3 4
3 4 5

The separate rows in a matrix can also be specified by hitting the Enter key

after each row instead of typing a semicolon when entering the matrix values,
as in:

>> newmat = [2 6 88
33 5 2]

newmat =
2 6 88

33 5 2

Matrices of random numbers can be created using the rand function. If a single

value n is passed to rand, an n x n matrix will be created; this is called a square

matrix (same number of rows and columns).

>> rand(2)
ans =

0.2311 0.4860
0.6068 0.8913

If instead two arguments are passed, they specify the number of rows and col-
umns in that order.

>> rand(1,3)
ans =

0.7621 0.4565 0.0185

Matrices of random integers can be generated using randi; after the range is

passed, the dimensions of the matrix are passed (again, using one value n

for an n x n matrix, or two values for the dimensions):

>> randi([5, 10], 2)
ans =

8 10
9 5

>> randi([10, 30], 2, 3)
ans =

21 10 13
19 17 26

Note

There must always be the

same number of values in

each row and each col-

umn of a matrix.

452.1 Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Note that the range can be specified for randi, but not for rand. The format for

calling these functions is different. There are a number of ways in which randi
can be called; use doc to see them.

MATLAB also has several functions that create specialmatrices. For example, the

zeros function creates a matrix of all zeros and the ones function creates a

matrix of all ones. Like rand, either one argument can be passed (which will
be both the number of rows and columns), or two arguments (first the number

of rows and then the number of columns).

>> zeros(3)
ans =

0 0 0
0 0 0
0 0 0

>> ones(2,4)
ans =

1 1 1 1
1 1 1 1

2.1.3.1 Referring to and Modifying Matrix Elements
To refer tomatrix elements, the row and then the column subscripts are given in

parentheses (always the row first and then the column). For example, this cre-
ates a matrix variable mat and then refers to the value in the second row, third

column of mat:

>> mat = [2:4; 3:5]
mat =

2 3 4
3 4 5

>> mat(2,3)
ans =

5

This is called subscripted indexing; it uses the row and column subscripts. It is

also possible to refer to a subset of a matrix. For example, this refers to the first
and second rows, second and third columns:

>> mat(1:2,2:3)
ans =

3 4
4 5

Using justonecolonby itself for the rowsubscriptmeansall rows, regardlessofhow
many, andusing a colon for the columnsubscriptmeans all columns. For example,

this refers to all columnswithin the first row or, in other words, the entire first row:

>> mat(1,:)
ans =

2 3 4

Note

that there is no twos

function, or tens, or fifty-

threes—just zeros and

ones!

46 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This refers to the entire second column:

>> mat(:, 2)
ans =

3
4

If a single index is used with a matrix, MATLAB unwinds the matrix column

by column. For example, for the matrix intmat created here, the first two
elements are from the first column, and the last two are from the second

column:

>> intmat = [100 77; 28 14]
intmat =

100 77
28 14

>> intmat(1)
ans =

100

>> intmat(4)
ans =

14

This is called linear indexing.

MATLAB stores matrices in memory in column major order, or columnwise,

which is why linear indexing refers to the elements in order by columns.

An individual element in a matrix can be modified by assigning a new value
to it.

>> mat = [2:4; 3:5];

>> mat(1,2) = 11
mat =

2 11 4
3 4 5

An entire row or column could also be changed. For example, the following
replaces the entire second row with values from a vector obtained using the

colon operator.

>> mat(2,:) = 5:7
mat =

2 11 4
5 6 7

Notice that as the entire row is being modified, a vector with the correct

length must be assigned (although that vector could be either a row or a
column).

Any subset of amatrix can bemodified, as long as what is being assigned has the

same number of rows and columns as the subset being modified.

Note

that it is usually much

better style when work-

ing with matrices to use

subscripted indexing.

472.1 Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> mat(1:2, 2:3) = 4:5
Unable to perform assignment because the size of the left side is

2–by–2 and the size of the right side is 1–by–2.

>> mat(1:2, 2:3) = zeros(2)
mat =

2 0 0
5 0 0

The exception to this rule is that a scalar can be assigned to any size subset of a
vector or matrix; what happens is that the same scalar is assigned to every ele-

ment referenced. For example,

>> m = randi([10 50], 3,5)
m =

38 11 38 11 41
11 13 23 27 42
21 43 48 25 17

>> m(2:3,3:5) = 1
m =

38 11 38 11 41
11 13 1 1 1
21 43 1 1 1

To extend a matrix, an individual element could not be added because that

would mean that there would no longer be the same number of values in

every row. However, an entire row or column could be added. For example,
the following would add a fourth column to the matrix mat created

previously.

>> mat(:,4) = [9 2] '
mat =

2 0 0 9
5 0 0 2

Just as we saw with vectors, if there is a gap between the current matrix and the
row or column being added, MATLAB will fill in with zeros.

>> mat(4,:) = 2:2:8
mat =

2 0 0 9
5 0 0 2
0 0 0 0
2 4 6 8

2.1.4 Dimensions

The length and size functions inMATLAB are used to find dimensions of vectors
and matrices. The length function returns the number of elements in a vector.

The size function returns the number of rows and columns in a vector or

Note

a row vector with two

elements could also be

assigned. MATLAB would

transpose it to a column

vector.

48 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

matrix. For example, the following vector vec has four elements, so its length is

4. It is a row vector, so the size is 1 � 4.

>> vec = –2:1
vec =

–2 –1 0 1

>> length(vec)
ans =

4

>> size(vec)
ans =

1 4

To create the following matrix variable mat, iterators are used on the two rows
and then the matrix is transposed so that it has three rows and two columns or,

in other words, the size is 3 x 2.

>> mat = [1:3; 5:7] '
mat =

1 5
2 6
3 7

The size function returns the number of rows and then the number of col-

umns; therefore, to capture these values in separate variables, we put a vector

of variables (two) on the left of the assignment. The variable r stores the first

value returned, which is the number of rows, and c stores the number of

columns.

>> [r, c] = size(mat)
r =

3
c =

2

If called as just an expression, the size function will return both values in a

vector:

>> size(mat)
ans =

3 2

For a matrix, the length function will return either the number of rows or the
number of columns, whichever is largest (in this case the number of rows, 3).

>> length(mat)
ans =

3

Note

that this example dem-

onstrates very important

and unique concepts in

MATLAB: the ability to

have a function return

multiple values and the

ability to have a vector of

variables on the left side

of an assignment in which

to store the values.

492.1 Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

In R2020b, the functions height and width were introduced. The height

function is the number of rows, and the width function is the number of
columns.

MATLAB also has a function numel, which returns the total number of ele-

ments in any array (vector or matrix):

>> vec = 9:–2:1
vec =

9 7 5 3 1
>> numel(vec)
ans =

5

>> mat = [3:2:7; 9 33 11]
mat =

3 5 7
9 33 11

>> numel(mat)
ans =

6

For vectors, numel is equivalent to the length of the vector. For matrices, it is

the product of the number of rows and columns.

It is important to note that in programming applications, it is better to not

assume that the dimensions of a vector or matrix are known. Instead, to be gen-

eral, use either the length or numel function to determine the number of ele-
ments in a vector, and use size (and store the result in two variables) for a

matrix.

MATLAB also has a built-in expression end that can be used to refer to the last

element in a vector; for example, v(end) is equivalent to v(length(v)). For

QUICK QUESTION!

How could you create a matrix of zeros with the same size as

another matrix?

Answer: For a matrix variablemat, the following expression

would accomplish this:

zeros(size(mat))

The size function returns the size of the matrix, which is then

passed to the zeros function, which then returns a matrix of

zeros with the same size asmat. It is not necessary in this case

to store the values returned from the size function in

variables.

50 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

matrices, it can refer to the last row or column. So, for example, using end for

the row index would refer to the last row.

In this case, the element referred to is in the first column of the last row:

>> mat = [1:3; 4:6] 0

mat =
1 4
2 5
3 6

>> mat(end,1)
ans =

3

Using end for the column index would refer to a value in the last column (e.g.,

the last column of the second row):

>> mat(2,end)
ans =

5

The expression end can only be used as an index.

2.1.4.1 Changing Dimensions
In addition to the transpose operator, MATLAB has several built-in functions

that change the dimensions or configuration of matrices (or in many cases vec-
tors), including reshape, fliplr, flipud, flip, and rot90.

The reshape function changes the dimensions of amatrix. The followingmatrix

variable mat is 3 � 4 or, in other words, it has 12 elements (each in the range
from 1 to 100).

>> mat = randi(100, 3, 4)
14 61 2 94
21 28 75 47
20 20 45 42

These 12 values could instead be arranged as a 2� 6matrix, 6� 2, 4� 3, 1� 12,

or 12 � 1. The reshape function iterates through the matrix columnwise. For
example, when reshaping mat into a 2 � 6matrix, the values from the first col-

umn in the original matrix (14, 21, and 20) are used first, then the values from

the second column (61, 28, 20), and so forth.

>> reshape(mat,2,6)
ans =

14 20 28 2 45 47
21 61 20 75 94 42

Note

that in these examples

mat is unchanged;

instead, the results are

stored in the default var-

iable ans each time.

512.1 Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

There are several functions that flip arrays. The fliplr function “flips” the matrix
from left to right (in other words the left-most column, the first column,

becomes the last column and so forth), and the flipud function flips up to

down.

>> mat
mat =

14 61 2 94
21 28 75 47
20 20 45 42

>> fliplr(mat)
ans =

94 2 61 14
47 75 28 21
42 45 20 20

>> mat
mat =

14 61 2 94
21 28 75 47
20 20 45 42

>> flipud(mat)
ans =

20 20 45 42
21 28 75 47
14 61 2 94

The flip function flips any array; it flips a vector (left to right if it is a row

vector or up to down if it is a column vector) or a matrix (up to down by

default).

The rot90 function rotates thematrix counterclockwise 90 degrees, so for exam-
ple, the value in the top right corner becomes instead the top left corner and the

last column becomes the first row.

>> mat
mat =

14 61 2 94
21 28 75 47
20 20 45 42

>> rot90(mat)
ans =

94 47 42
2 75 45

61 28 20
14 21 20

52 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The function repmat can be used to create a matrix; repmat(mat,m,n) creates a

largermatrix that consists of anm� nmatrix of copies ofmat. For example, here
is a 2 � 2 random matrix:

>> intmat = randi(100,2)
intmat =

50 34
96 59

Replicating this matrix six times as a 3 � 2 matrix would produce copies of
intmat in this form:

intmat intmat

intmat intmat

intmat intmat

>> repmat(intmat,3,2)
ans =

50 34 50 34
96 59 96 59
50 34 50 34
96 59 96 59
50 34 50 34
96 59 96 59

QUICK QUESTION!

Is there a rot180 function? Is there a rot-90 function (to rotate

clockwise)?

Answer: Not exactly, but a second argument can be passed

to the rot90 function, which is an integer n; the function will

rotate 90*n degrees. The integer can be positive or negative.

For example, if 2 is passed, the function will rotate the matrix

180 degrees (therefore, it would be the same as rotating the

result of rot90 another 90 degrees).

>> mat

mat =

14 61 2 94

21 28 75 47

20 20 45 42

>> rot90(mat,2)

ans =

42 45 20 20

47 75 28 21

94 2 61 14

If a negative number is passed for n, the rotation would be in

the opposite direction, that is, clockwise.

>> mat

mat =

14 61 2 94

21 28 75 47

20 20 45 42

>> rot90(mat,–1)

ans =

20 21 14

20 28 61

45 75 2

42 47 94

532.1 Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The function repelem, on the other hand, replicates each element from amatrix

in the dimensions specified.

>> repelem(intmat,3,2)
ans =

50 50 34 34
50 50 34 34
50 50 34 34
96 96 59 59
96 96 59 59
96 96 59 59

2.1.5 Empty Vectors

An empty vector (a vector that stores no values) can be created using empty

square brackets:

>> evec = []
evec =

[]
>> length(evec)
ans =

0

Values can then be added to an empty vector by concatenating, or adding,

values to the existing vector. The following statement takes what is currently
in evec, which is nothing, and adds a 4 to it.

>> evec = [evec 4]
evec =

4

The following statement takes what is currently in evec, which is 4, and adds an

11 to it.

>> evec = [evec 11]
evec =

4 11

This can be continued as many times as desired to build a vector up from noth-

ing. Sometimes this is necessary, although generally it is not a good idea if it can

be avoided because it can be quite time consuming.

Empty vectors can also be used to delete elements from vectors. For example, to

remove the third element from a vector, the empty vector is assigned to it:

>> vec = 4:8
vec =

4 5 6 7 8
>> vec(3) = []
vec =

4 5 7 8

Note

that there is a difference

between having an empty

vector variable and not

having the variable at all.

54 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The elements in this vector are now numbered 1 through 4. Note that the var-

iable vec has actually changed.

Subsets of a vector could also be removed. For example:

>> vec = 3:10
vec =

3 4 5 6 7 8 9 10
>> vec(2:4) = []
vec =

3 7 8 9 10

Entire rows or columns could be removed from a matrix. For example, to

remove the second column:

>> mat = [7 9 8; 4 6 5]
mat =

7 9 8
4 6 5

>> mat(:,2) = []
mat =

7 8
4 5

Individual elements cannot be removed frommatrices because matrices always

have to have the same number of elements in every row.

>> mat(1,2) = [];
A null assignment can have only one non-colon index.

Also, if linear indexing is usedwith amatrix to delete an element, thematrix will

be reshaped into a row vector.

>> mat = [7 9 8; 4 6 5]
mat =

7 9 8
4 6 5

>> mat(3) = []
mat =

7 4 6 8 5

(Again, using linear indexing is not a good idea.)

PRACTICE 2.2

Think about what would be produced by the following sequence of statements and expressions,

and then type them in to verify your answers.

mat = [1:3; 44 9 2; 5:–1:3]

mat(3,2)

mat(2,:)

552.1 Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

size(mat)

mat(:,4) = [8;11;33]

numel(mat)

v = mat(3,:)

v(v(2))

v(1) = []

reshape(mat,2,6)

2.1.6 Three-Dimensional Matrices

Thematrices thathavebeenshownsofarhavebeentwo-dimensional; thesematri-

ces have rows and columns. Matrices in MATLAB are not limited to two dimen-
sions, however. In fact, in Chapter 13 we will see image applications in which

three-dimensional matrices are used. For a three-dimensional matrix, imagine a

two-dimensionalmatrixasbeing flatonapage, andthen the thirddimensioncon-
sists of more pages on top of that one (so, they are stacked on top of each other).

Three-dimensional matrices can be created using the zeros, ones, and rand
functions by specifying three dimensions to begin with. For example,

zeros(2,4,3) will create a 2 � 4 � 3 matrix of all 0s.

Unless specified otherwise, in the remainder of this book “matrices” will be
assumed to be two-dimensional.

2.2 VECTORS AND MATRICES AS FUNCTION
ARGUMENTS

In MATLAB, an entire vector or matrix can be passed as an argument to a func-

tion; the function will be evaluated on every element. This means that the result

will be the same size as the input argument.

For example, let us find the absolute value of every element of a vector vec. The
abs function will automatically return the absolute value of each individual

element and the result will be a vector with the same length as the vector
argument.

>> vec = –2:1
vec =

–2 –1 0 1
>> absvec = abs(vec)
absvec =

2 1 0 1

56 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

For a matrix, the resulting matrix will have the same size as the original argu-

ment matrix. For example, the sign function will find the sign of each element
in a matrix:

>> mat = [0 4 –3; –1 0 2]
mat =

0 4 –3
–1 0 2

>> sign(mat)
ans =

0 1 -1
-1 0 1

Functions such as abs and sign can have either scalars or arrays (vectors or
matrices) passed to them. There are a number of functions that are written spe-

cifically to operate on vectors or on columns ofmatrices; these include the func-

tions min, max, sum, and prod. These functions will be demonstrated, first
with vectors, and then with matrices.

For example, assume that we have the following vector variables:

>> vec1 = 1:5;
>> vec2 = [3 5 8 2];

The function min will return the minimum value from a vector, and the func-

tion max will return the maximum value.

>> min(vec1)
ans =

1
>> max(vec2)
ans =

8

The function sum will sum all of the elements in a vector. For example, for vec1

it will return 1+2+3+4+5 or 15:

>> sum(vec1)
ans =

15

The function prod will return the product of all of the elements in a vector; for

example, for vec2 it will return 3*5*8*2 or 240:

>> prod(vec2)
ans =

240

There are also functions that return cumulative results; the functions cumsum
and cumprod return the cumulative sum or cumulative product, respectively.

A cumulative, or running sum, stores the sum so far at each step because it adds

572.2 Vectors and Matrices as Function Arguments

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

the elements from the vector. For example, for vec1, it would store the first ele-

ment, 1, then 3 (1+2), then 6 (1+2+3), then 10 (1+2+3+4), then, finally,
15 (1+2+3+4+5). The result is a vector that has as many elements as the input

argument vector that is passed to it:

>> cumsum(vec1)
ans =

1 3 6 10 15

The cumprod function stores the cumulative products because it multiplies the
elements in the vector together; again, the resulting vector will have the same

length as the input vector:

>> cumprod(vec1)
ans =

1 2 6 24 120

For matrices, all of these functions operate on every individual column. If a
matrix has dimensions r � c, the result for the min, max, sum, and prod

functions will be a 1 � c row vector, because they return the minimum, max-

imum, sum, or product respectively for every column. For example, assume the
following matrix:

>> mat = randi([1 20], 3, 5)
mat =

3 16 1 14 8
9 20 17 16 14

19 14 19 15 4

The following are the results for the max and sum functions:

>> max(mat)
ans =

19 20 19 16 14
>> sum(mat)
ans =

31 50 37 45 26

To find a function for every row, instead of every column, one method would

be to transpose the matrix.

>> max(mat ')
ans =

16 20 19
>> sum(mat ')
ans =

42 76 71

58 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

For the cumsum and cumprod functions, again they return the cumulative sum

or product of every column. The resultingmatrix will have the same dimensions
as the input matrix:

>> mat
mat =

3 16 1 14 8
9 20 17 16 14

19 14 19 15 4
>> cumsum(mat)
ans =

3 16 1 14 8
12 36 18 30 22
31 50 37 45 26

Another useful function that can be used with vectors and matrices is diff. The

function diff returns the differences between consecutive elements in a vector.

For example,

>> diff([4 7 15 32])
ans =

3 8 17

>> diff([4 7 2 32])
ans =

3 –5 30

For a vector vwith a length of n, the length of diff(v)will be n� 1. For a matrix,

the diff function will operate on each column.

>> mat = randi(20, 2,3)
mat =

17 3 13
19 19 2

>> diff(mat)
ans =

2 16 –11

QUICK QUESTION!

Because these functions operate columnwise, how can we get

an overall result for the matrix? For example, how would we

determine the overall maximum in the matrix?

Answer: We would have to get the maximum from the row

vector of columnmaxima, in other words, nest the calls to the

max function:

>> max(max(mat))

ans =

20

Note

that the first row in the

resulting matrix is the

same as the first row in

the input matrix. After

that, the values in the

rows accumulate.

592.2 Vectors and Matrices as Function Arguments

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

2.3 SCALAR AND ARRAY OPERATIONS ON VECTORS
AND MATRICES

Numerical operations can be done on entire vectors or matrices. For example,

let us say that we want to multiply every element of a vector v by 3.

In MATLAB, we can simply multiply v by 3 and store the result back in v in an
assignment statement:

>> v= [3 7 2 1];
>> v = v*3
v =

9 21 6 3

As another example, we can divide every element by 2:

>> v= [3 7 2 1];
>> v/2
ans =

1.5000 3.5000 1.0000 0.5000

To multiply every element in a matrix by 2:

>> mat = [4:6; 3:-1:1]
mat =

4 5 6
3 2 1

>> mat * 2
ans =

8 10 12
6 4 2

This operation is referred to as scalar multiplication (or division). We are
multiplying every element in a vector or matrix by a scalar (or dividing every

element in a vector or a matrix by a scalar).

QUICK QUESTION!

There is no tens function to create a matrix of all tens, so how

could we accomplish that?

Answer: We can either use the ones function and multiply

by ten, or the zeros function and add ten:

>> ones(1,5) * 10

ans =

10 10 10 10 10

>> zeros(2) + 10

ans =

10 10

10 10

60 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Array operations are operations that are performed on vectors or matrices term

by term, or element by element. This means that the two arrays (vectors or
matrices) must be of the same size to begin with. The following examples

demonstrate the array addition and subtraction operators.

>> v1 = 2:5
v1 =

2 3 4 5
>> v2 = [33 11 5 1]
v2 =

33 11 5 1
>> v1 + v2
ans =

35 14 9 6

>> mata = [5:8; 9:–2:3]
mata =

5 6 7 8
9 7 5 3

>> matb = reshape(1:8,2,4)
matb =

1 3 5 7
2 4 6 8

>> mata – matb
ans =

4 3 2 1
7 3 –1 –5

However, for any operation that is based onmultiplication (which means mul-

tiplication, division, and exponentiation), a dot must be placed in front of the

operator for array operations. For example, for the exponentiation operator .^
must be used when working with vectors and matrices, rather than just the ^

operator. Squaring a vector, for example, means multiplying each element

by itself, so the .^ operator must be used.

>> v= [3 7 2 1];
>> v ^ 2
Error using ^
Incorrect dimensions for raising a matrix to a power. Check that the

matrix is square and the power is a scalar. To perform elementwise

matrix powers, use '.^ '.
>> v .^ 2
ans =

9 49 4 1

Similarly, the operator .*must be used for array multiplication and ./ or .\ for

array division. The following examples demonstrate array multiplication and

array division.

>> v1 = 2:5
v1 =

2 3 4 5

612.3 Scalar and Array Operations on Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> v2 = [33 11 5 1]
v2 =

33 11 5 1

>> v1 .* v2
ans =

66 33 20 5

>> mata = [5:8; 9:–2:3]
mata =

5 6 7 8
9 7 5 3

>> matb = reshape(1:8, 2,4)
matb =

1 3 5 7
2 4 6 8

>> mata ./ matb
ans =

5.0000 2.0000 1.4000 1.1429
4.5000 1.7500 0.8333 0.3750

The operators .^, .*, ./, and .\ are called array operators and are used when mul-

tiplying or dividing vectors or matrices of the same size term by term. Note that
matrix multiplication is a very different operation and will be covered in

Section 2.5.

PRACTICE 2.3

Create a vector variable and subtract 3 from every element in it.

Create a matrix variable and divide every element by 3.

Create a matrix variable and square every element.

2.4 LOGICAL VECTORS

Logical vectors use relational expressions that result in true/false values.

2.4.1 Relational Expressions With Vectors and Matrices

Relational operators can be used with vectors and matrices. For example, let us

say that there is a vector vec, andwewant to compare every element in the vector
to 5 to determine whether it is greater than 5 or not. The result would be a vector

(with the same length as the original) with logical true or false values.

>> vec = [5 9 3 4 6 11];
>> isg = vec > 5
isg =

1�6 logical array
0 1 0 0 1 1

62 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Note that this creates a vector consisting of all logical true or false values.

Although the result is a vector of ones and zeros, and numerical operations
can be done on the vector isg, its type is logical rather than double.

>> whos
Name Size Bytes Class Attributes

isg 1x6 6 logical
vec 1x6 48 double

To determine how many of the elements in the vector vec were greater than 5,
the sum function could be used on the resulting vector isg:

>> sum(isg)
ans =

3

What we have done is create a logical vector isg. This logical vector can be used to
index into the original vector. For example, if only the elements from the vector

that are greater than 5 are desired:

>> vec(isg)
ans =

9 6 11

This is called logical indexing. Only the elements from vec for which the corre-

sponding element in the logical vector isg is logical true are returned.

To create a vector or matrix of all logical 1s or 0s, the functions true and false

can be used.

>> false(2)
ans =

0 0
0 0

>> true(1,5)
ans =

1 1 1 1 1

QUICK QUESTION!

Why doesn’t the following work?

>> vec = [5 9 3 4 6 11];

>> v = [0 1 0 0 1 1];

>> vec(v)

Array indices must be positive integers or

logical values.

Answer: The difference between the vector in this example

and isg is that isg is a vector of logicals (logical 1s and 0s),

whereas [0 1 0 0 1 1] by default is a vector of double values.

Only logical 1s and 0s can be used to index into a vector. So, type

casting the variable v would work:

>> v = logical(v);

>> vec(v)

ans =

9 6 11

632.4 Logical Vectors

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

2.4.2 Logical Built-In Functions

There are built-in functions in MATLAB, which are useful in conjunction with
logical vectors or matrices; two of these are the functions any and all. The func-

tion any returns logical true if any element in a vector represents true, and false

if not. The function all returns logical true only if all elements represent true.
Here are some examples.

For the following variable vec2, some, but not all, elements are true; conse-

quently, any returns true but all returns false.

>> vec2 = logical([1 1 0 1])
vec2 =

1 1 0 1
>> any(vec2)
ans =

1
>> all(vec2)
ans =

0
>> all(true(1,3))
ans =

1

The function find returns the indices of a vector that meet given criteria. For

example, to find all of the elements in a vector that are greater than 5:

>> vec = [5 3 6 7 2]
vec =

5 3 6 7 2
>> find(vec > 5)
ans =

3 4

Formatrices, the find function will use linear indexing when returning the indi-
ces that meet the specified criteria. For example:

>> mata = randi(10,2,4)
mata =

5 6 7 8
9 7 5 3

>> find(mata == 5)
ans =

1
6

For both vectors and matrices, an empty vector will be returned if no elements
match the criterion. For example,

>> find(mata == 11)
ans =

0�1 empty double column vector

The function isequal is useful in comparing arrays. In MATLAB, using the

equality operator with arrays will return 1 or 0 for each element; the all

64 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

function could then be used on the resulting array to determine whether all

elements were equal or not. The built-in function isequal also accomplishes
this:

>> vec1 = [1 3 –4 2 99];
>> vec2 = [1 2 –4 3 99];
>> vec1 == vec2
ans =

1 0 1 0 1
>> all(vec1 == vec2)
ans =

0
>> isequal(vec1,vec2)
ans =

0

However, one difference is that if the two arrays are not the same dimensions,

the isequal function will return logical 0, whereas using the equality operator
will result in an error message.

This works with character arrays, also.

>> ca1 = 'hello ';
>> ca2 = 'howdy';
>> ca1 == ca2
ans =

1 0 0 0 0
>> isequal(ca1, ca2)
ans =

0
>> isequal(ca1, 'hello ')
ans =

1

QUICK QUESTION!

If we have a vector vec that erroneously stores negative values,

how can we eliminate those negative values?

Answer: One method is to determine where they are and

delete these elements:

>> vec = [11 –5 33 2 8 –4 25];

>> neg = find(vec < 0)

neg =

2 6

>> vec(neg) = []

vec =

11 33 2 8 25

Alternatively, we can just use a logical vector rather than find:

>> vec = [11 –5 33 2 8 –4 25];

>> vec(vec < 0) = []

vec =

11 33 2 8 25

652.4 Logical Vectors

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PRACTICE 2.4

Modify the result seen in the previous Quick Question! Instead of deleting the negative elements,

retain only the positive ones. (Hint: Do it two ways, using find and using a logical vector with the

expression vec >¼ 0.)

The following is an example of an application of several of the functions men-

tioned here. A vector that stores a signal can contain both positive and negative

values. (For simplicity, we will assume no zeros, however.) For many applica-
tions it is useful to find the zero crossings, or where the signal goes from being

positive to negative or vice versa. This can be accomplished using the functions

sign, diff, and find.

>> vec = [0.2 –0.1 –0.2 –0.1 0.1 0.3 –0.2];
>> sv = sign(vec)
sv =

1 –1 –1 –1 1 1 –1

>> dsv = diff(sv)
dsv =

–2 0 0 2 0 –2

>> find(dsv �= 0)
ans =

1 4 6

This shows that the signal crossings are between elements 1 and 2, 4 and 5, and

6 and 7.

MATLAB has or and operators that work elementwise for arrays:

Operator Meaning

j elementwise or for arrays

& elementwise and for arrays

These operators will compare any two vectors or matrices as long as they are the

same size, element by element and return a vector or matrix of the same size of
logical 1s and 0s. The operators jj and && are only used with scalars, not matri-

ces. For example:

>> v1 = logical([1 0 1 1]);
>> v2 = logical([0 0 1 0]);

>> v1 & v2
ans =

0 0 1 0

>> v1 j v2
ans =

1 0 1 1

66 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> v1 && v2
Operands to the logical and (&&) and or (jj) operators must be

convertible to logical scalar values.

As with the numerical operators, it is important to know the operator prece-

dence rules. Table 2.1 shows the rules for the operators that have been covered

so far, in the order of precedence.

2.5 MATRIX OPERATIONS AND MATRIX PROPERTIES

We have seen array operations such as array multiplication. In this section, we

will examine some important operations on matrices such as matrix multipli-
cation and properties of square matrices. All of this is useful in linear algebra

applications.

2.5.1 Matrix Multiplication

Matrix multiplication does notmeanmultiplying term by term; it is not an array

operation.Matrixmultiplication has a very specificmeaning. First of all, tomul-

tiply a matrix A by a matrix B to result in a matrix C, the number of columns of
A must be the same as the number of rows of B. If the matrix A has dimensions

m � n, that means that matrix B must have dimensions n � something; we will

call it p.

We say that the inner dimensions (the ns) must be the same. The resultingmatrix

C has the same number of rows as A and the same number of columns as B (i.e.,
the outer dimensions m � p). In mathematical notation,

Table 2.1 Operator Precedence Rules

Operators Precedence

parentheses: () highest

transpose and power: ', ^, .^
unary: negation (–), not (�)

multiplication, division *,/,\,.*,./,.\

addition, subtraction +, –

colon :

relational <, <=, >, >=, ==, �=

element-wise and &

element-wise or j
and && (scalars)

or jj (scalars) lowest

672.5 Matrix Operations and Matrix Properties

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

A½ �m� n B½ �n� p ¼ C½ �m� p

This only defines the size of C, not how to find the elements of C.

The elements of the matrix C are defined as the sum of products of correspond-

ing elements in the rows of A and columns of B, or in other words,

cij ¼
Xn
k¼1

aikbkj:

In the following example, A is 2 � 3 and B is 3 � 4; the inner dimensions are

both 3, so performing the matrix multiplication A*B is possible (note that B*A
would not be possible). C will have as its size the outer dimensions 2 � 4. The
elements in C are obtained using the summation just described. The first row of

C is obtained using the first row of A and in succession the columns of B. For

example, C(1,1) is 3*1+8*4+0*0 or 35. C(1,2) is 3*2+8*5+0*2 or 46.

A B C

3 8 0

1 2 5

" #
∗

1 2 3 1

4 5 1 2

0 2 3 0

2
664

3
775 ¼

35 46 17 19

9 22 20 5

" #

In MATLAB, the * operator will perform this matrix multiplication:

>> A = [3 8 0; 1 2 5];
>> B = [1 2 3 1; 4 5 1 2; 0 2 3 0];
>> C = A*B
C =

35 46 17 19
9 22 20 5

PRACTICE 2.5

When two matrices have the same dimensions and are square, both array and matrix multiplica-

tion can be performed on them. For the following two matrices, perform A.*B, A*B, and B*A by

hand and then verify the results in MATLAB.

A B

1 4

3 3

" #
1 2

�1 0

" #

68 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

2.5.2 Matrix Multiplication for Vectors

Because vectors are just special cases of matrices, the matrix operations
described previously (addition, subtraction, scalar multiplication, multipli-

cation, transpose) also work on vectors, as long as the dimensions are

correct.

For vectors, we have already seen that the transpose of a row vector is a column

vector, and the transpose of a column vector is a row vector.

To multiply vectors, they must have the same number of elements, but one

must be a row vector and the other a column vector. For example, for a column

vector c and row vector r:

c¼

5

3

7

1

2
6664

3
7775 r¼ 6 2 3 4½ �

Note that r is 1 � 4, and c is 4 � 1, so

r½ �1� 4 c½ �4� 1 ¼ s½ �1� 1

or, in other words, a scalar:

6 2 3 4½ � ¼

5

3

7

1

2
6664

3
7775¼ 6∗5+ 2∗3 + 3∗7∗1¼ 61

whereas [c]4 � 1[r]1 � 4 ¼ [M]4 � 4, or in other words a 4 � 4 matrix:

5

3

7

1

2
66664

3
77775 6 2 3 4½ � ¼

30 10 15 20

18 6 9 12

42 14 21 28

6 2 3 4

2
66664

3
77775

In MATLAB, these operations are accomplished using the * operator, which is

the matrix multiplication operator. First, the column vector c and row vector r
are created.

>> c = [5 3 7 1] ';
>> r = [6 2 3 4];

692.5 Matrix Operations and Matrix Properties

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> r*c
ans =

61

>> c*r
ans =

30 10 15 20
18 6 9 12
42 14 21 28
6 2 3 4

There are also operations specific to vectors: the dot product and cross product.
The dot product, or inner product, of two vectors a and b is written as a • b and is

defined as

a1b1 + a2b2 + a3b3 +… + anbn ¼
Xn
i¼1

aibi

where both a and b have n elements and ai and bi represent elements in the vec-
tors. In other words, this is like matrix multiplication when multiplying a row

vector a by a column vector b; the result is a scalar. This can be accomplished

using the * operator and transposing the second vector, or by using the dot
function in MATLAB:

>> vec1 = [4 2 5 1];
>> vec2 = [3 6 1 2];
>> vec1*vec2 '
ans =

31

>> dot(vec1,vec2)
ans =

31

The cross product or outer product a � b of two vectors a and b is defined only

when both a and b have three elements. It can be defined as a matrix multipli-

cation of a matrix composed from the elements from a in a particular manner
shown here and the column vector b.

a x b¼
0 �a3 a2
a3 0 �a1
�a2 a1 0

2
4

3
5 b1

b2
b3

2
4

3
5¼ a2b3�a3b2, a3b1�a1b3, a1b2�a2b1½ �

MATLAB has a built-in function cross to accomplish this.

>> vec1 = [4 2 5];
>> vec2 = [3 6 1];
>> cross(vec1,vec2)
ans =

�28 11 18

70 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

2.5.3 Properties of Square Matrices

If an m x n matrix has the same number of rows and columns (e.g., if m == n),
the matrix is square. The definitions that follow in this section only apply to

square matrices.

Themain diagonal of a squarematrix (sometimes called just the diagonal) is the

set of terms aii for which the row and column indices are the same, so from the
upper left element to the lower right. For example, for the following matrix, the

diagonal consists of 1, 6, 11, and 16.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

2
666664

3
777775

A square matrix is a diagonal matrix if all values that are not on the diagonal are

0. The numbers on the diagonal, however, do not have to be all nonzero,
although frequently they are. Mathematically, this is written as aij ¼ 0 for i

�¼ j. The following is an example of a diagonal matrix:

4 0 0

0 9 0

0 0 5

2
664

3
775

MATLAB has a function diag that will return the diagonal of a matrix as a
column vector; transposing will result in a row vector instead.

>> mymat = reshape(1:16,4,4)'
mymat =

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
>> diag(mymat)'
ans =

1 6 11 16

Thediag function can also be used to take a vector of length n and create an n� n

square diagonal matrix with the values from the vector on the diagonal:

>> v=1:4;
>> mat = diag(v)
mat =

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

712.5 Matrix Operations and Matrix Properties

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Therefore, the diag function can be used two ways: (i) pass a matrix and it

returns a vector, or (ii) pass a vector and it returns a matrix!

The trace of a square matrix is the sum of all of the elements on the diagonal.

For example, for the diagonal matrix created using v it is 1 + 2 + 3 + 4, or 10.

In MATLAB, there is a built-in function trace to calculate the trace of a square
matrix:

>> trace(mat)
ans =

10

A squarematrix is an identitymatrix called I if aij¼ 1 for i == j and aij¼ 0 for i �= j.

In other words, all of the numbers on the diagonal are 1 and all others are 0. The
following is a 3 � 3 identity matrix:

1 0 0

0 1 0

0 0 1

2
664

3
775

Note that any identity matrix is a special case of a diagonal matrix.

Identity matrices are very important and useful. MATLAB has a built-in function

eye that will create an n � n identity matrix, given the value of n:

>> eye(5)
ans =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

QUICK QUESTION!

What happens if a matrix M is multiplied by an identity matrix

(of the appropriate size)?

Answer: For the size to be appropriate, the dimensions of

the identity matrix would be the same as the number of col-

umns of M. The result of the multiplication will always be the

original matrix M (thus, it is similar to multiplying a scalar

by 1).

>> M = [1 2 3 1; 4 5 1 2; 0 2 3 0]

M =

1 2 3 1

4 5 1 2

0 2 3 0

>> [r, c] = size(M);

>> M * eye(c)

ans =

1 2 3 1

4 5 1 2

0 2 3 0

Note

that i is built into MATLAB

as the square root of -1,

so another name is used

for the function that cre-

ates an identity matrix:

eye, which sounds like “i”

(... get it?).

72 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

A square matrix is symmetric if aij¼ aji for all i, j. In other words, all of the values

opposite the diagonal from each other must be equal to each other. In this
example, there are three pairs of values opposite the diagonals, all of which

are equal (the 2s, the 9s, and the 4s).

1 2 9

2 5 4

9 4 6

2
664

3
775

PRACTICE 2.6

For the following matrices:

A B C

4 3

3 2

" #
1 2 3

4 5 6

" # 1 0 0

4 6 0

3 1 3

2
664

3
775

Which are square?

For all square matrices:

n Calculate the trace.

n Which are symmetric?

n Which are diagonal?

MATLAB has several “is” functions that determine whether or not matrices

have some of the properties explained in this section (e.g., isdiag,

issymmetric).

Data Science and Machine Learning Supplement
Central Tendency and Outliers
There are a lot of statistical analyses that can be performed on data sets. In this
section, we will introduce some simple analyses on one variable, which are

called the central tendency of the data. The idea is this: consider a sorted set

of exam grades {33, 75, 77, 82, 83, 85, 85, 91, 100}. What is a “normal,”
“expected,” or “average” exam grade? There are several ways that this could

be interpreted. Perhaps the most common is the mean grade, which is found

by summing the grades and dividing by the number of grades (the result of that
would be 79). Another way of interpreting that would be the grade found the

most often, which would be 85 (this is themode). Also, the value in the middle

732.5 Matrix Operations and Matrix Properties

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

of the sorted list, 83, could be used (this is the median). Vectors will be used to

represent data sets.

The arithmetic mean of a data set is what is usually called the average of the

values or, in other words, the sum of the values divided by the number of values

in the data set. Mathematically, we would write this as

Pn
i¼1

xi

n .

There is a built-in function, mean, in MATLAB to accomplish this:

>> x = [9 10 10 9 8 7 3 10 9 8 5 10];
>> mean(x)
ans =

8.1667

Sometimes a value that is much larger or smaller than the rest of the data

(called an outlier) can throw off the mean. For example, in the following,
all of the numbers in the data set are in the range from 3 to 10, with the

exception of the 100 in the middle. Because of this outlier, the mean of

the values in this vector is actually larger than any of the other values in
the vector.

>> xwithbig = [9 10 10 9 8 100 7 3 10 9 8 5 10];
>> mean(xwithbig)
ans =

15.2308

Often, an outlier like this represents an error of some kind, perhaps in the data

collection. To handle this, sometimes the minimum and maximum values
from a data set are discarded before the mean is computed.

>> newx = xwithbig;
>> loc = find(newx == min(newx));
>> newx(loc) = [];
>> loc = find(newx == max(newx));
>> newx(loc) = []
newx =

9 10 10 9 8 7 10 9 8 5 10

Instead of just removing the minimum and maximum values, sometimes the

largest and smallest 1% or 2% of values are removed, especially if the data
set is very large. Statistics andMachine Learning Toolbox™ has a function trim-

mean, which trims the highest and lowest n%of data values, where the percent-

age n is specified as an argument.

Be careful with this, however. Sometimes, outliers are not errors but are impor-

tant information. In fraud detection, for example, outliers can be anomalies in
the data that indicate that a security breach may have taken place.

The mode of a data set is the value that appears most frequently. The built-in

function in MATLAB for this is called mode.

74 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> x = [9 10 10 9 8 7 3 10 9 8 5 10];
>> mode(x)
ans =

10

If there is more than one value with the same (highest) frequency, the smaller

value is the mode. In the following case, as 3 and 8 appear twice in the vector,

the smaller value (3) is the mode:

>> x = [3 8 5 3 4 1 8];
>> mode(x)
ans =

3

Therefore, if no value appears more frequently than any other, the mode of the

vector will be the same as the minimum.

The median is defined only for a data set that has been sorted first, meaning
that the values are in order. Themedian of a sorted set of n data values is defined

as the value in the middle, if n is odd, or the average of the two values in the

middle if n is even. For example, for the vector [1 4 5 9 12], the middle value is 5.
The function in MATLAB is calledmedian:

>> median([1 4 5 9 12])
ans =

5

For the vector [1 4 5 9 12 33], the median is the average of the 5 and 9 in the

middle:

>> median([1 4 5 9 12 33])
ans =

7

If the vector is not in sorted order to begin with, the sort function can be used,

but this is not necessary because themedian functionwill still return the correct

result (it will sort the vector automatically). For example, scrambling the order
of the values in the first example will still result in a median value of 5.

>> median([9 4 1 5 12])
ans =

5

Sometimes with actual data sets, values can be missing or incorrect. In those

instances, it is common to replace the missing or incorrect data with either

the mean, mode, or median of the other data values. Often, when reading data
into MATLAB, missing values are replaced by the constant NaN. So, a dataset

might store something like this:

>> dataset = [5 NaN 9 3 11 NaN];

Themean andmedian functions (as well as other functions such as sum, prod,

etc.) would return NaN for this dataset. However, the argument ‘omitnan’ can

752.5 Matrix Operations and Matrix Properties

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

be added to function calls using these functions in order for the NaN values to

be ignored.

>> mean(dataset,'omitnan ')
ans =

7

n Explore Other Interesting Features

n There are many functions that create special matrices (e.g.,. hilb for a

Hilbert matrix, magic, and pascal).

n The gallery function, which can return many different types of test
matrices for problems.

n The ndims function to find the number of dimensions of an argument.

n The shiftdim function.
n The circshift function. How can you get it to shift a row vector, resulting

in another row vector?
n The sub2ind and ind2sub functions to convert from subscripted

indexing to linear indexing, and vice versa.

n How to reshape a three-dimensional matrix.
n The range function.

n Passing 3Dmatrices to functions. For example, if you pass a 3x5x2matrix

to the sum function, what would be the size of the result?
n The meshgrid function can specify the x and y coordinates of points in

images, or can be used to calculate functions on two variables x and y. It

receives as input arguments two vectors and returns as output arguments
two matrices that specify separately x and y values. n

SUMMARY

COMMON PITFALLS

n Attempting to create a matrix that does not have the same number of

values in each row.
n Confusing matrix multiplication and array multiplication. Array

operations, including multiplication, division, and exponentiation, are

performed term by term (so the arrays must have the same size); the
operators are .*, ./, .\, and .^. For matrix multiplication to be possible, the

inner dimensions must agree, and the operator is *.
n Attempting to use an array of double 1s and 0s to index into an array

(must be logical, instead).

n Forgetting that for array operations based onmultiplication, the dot must

be used in the operator. In other words, for multiplying, dividing by,

76 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

dividing into, or raising to an exponent term by term, the operators are .*,
./, .\, and .^.

n Attempting to use jj or && with arrays. Always use j and & when working
with arrays; jj and && are only used with scalars.

PROGRAMMING STYLE GUIDELINES

n If possible, try not to extendvectors ormatrices because it is not very efficient.

n Do not use just a single index when referring to elements in a matrix;
instead, use both the row and column subscripts (use subscripted

indexing rather than linear indexing).

n To be general, never assume that the dimensions of any array (vector or
matrix) are known. Instead, use the function length ornumel to determine

the number of elements in a vector, and the function size for a matrix:

len = length(vec);
[r, c] = size(mat);

n Use true instead of logical(1) and false instead of logical(0), especially
when creating vectors or matrices.

MATLAB Functions and Commands

linspace
logspace
zeros
ones
length
size
height
width
numel

end
reshape
fliplr
flipud
flip
rot90
repmat
repelem
min

max
sum
prod
cumsum
cumprod
diff
any
all
find

isequal
dot
cross
diag
trace
eye
isdiag
issymmetric

MATLAB Operators

colon :
transpose ’
array operators .^, .*, ./, .\
elementwise or for matrices j
elementwise and for matrices &
matrix multiplication *

77Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Exercises

1. Create the vector vec in three different ways: using just square brackets, using

the colon operator, and using linspace:

vec =
5 7 9 11

2. Write an expression using linspace that will result in the same as 1: 0.5: 3

3. Which of the following will create the vector?

vec =
2 4 6 8

vec = 2:2:8
vec = 2:2:9
vec = linspace(2,8,4)
vec = flip(8:-2:2)

4. How many elements would be in the vectors created by the following

expressions?

linspace(3,2000)
logspace(3,2000)

5. Explain how the step value is obtained by the linspace function. First, create a

few examples to reference.

6. Create a variable myend, which stores a random integer in the inclusive range

from 5 to 9. Using the colon operator, create a vector that iterates from 1 to

myend in steps of 3.

7. Create two row vector variables. Concatenate them together to create a new

row vector variable.

8. Using the colon operator and the transpose operator, create a column vector

myvec that has the values -1 to 1 in steps of 0.5.

9. Write an expression that refers to only the elements that have odd-numbered

subscripts in a vector, regardless of the length of the vector. Test your

expression on vectors that have both an odd and even number of elements.

10. Generate a 2� 4matrix variablemat. Replace the first rowwith 1:4. Replace the

third column (you decide with which values).

11. Generate a 2 � 4 matrix variable mat. Verify that the number of elements is

equal to the product of the number of rows and columns. Do this using width

and height.

12. Which would you normally use for a matrix: length or size? Why?

13. When would you use length versus size for a vector?

14. Generate a 2 � 3 matrix of random

n real numbers, each in the range (0, 1)

n real numbers, each in the range (0, 5)

n integers, each in the inclusive range from 10 to 50

78 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

15. Create a variable rows that is a random integer in the inclusive range from 1 to

5. Create a variable cols that is a random integer in the inclusive range from 1 to

5. Create a matrix of all zeros with the dimensions given by the values of rows

and cols.

16. Create a vector variable vec. Find as many expressions as you can that would

refer to the last element in the vector, without assuming that you know how

many elements it has (i.e., make your expressions general).

17. Create a matrix variable mat. Find as many expressions as you can that would

refer to the last element in the matrix, without assuming that you know how

many elements or rows or columns it has (i.e., make your expressions general).

18. Given amatrix variablemat that has at least three columns, show how to delete

the third column (assuming that there are at least three columns).

19. Why would the following code produce an error message? Explain what each

statement does or attempts to do.

mat = [1:3; 4:6];
mat(:,2) = [3 7 11]'

20. Explain why this code works:

vec = 1:6;
vec(3) = []

But this code does not:

mat = reshape(1:6, 2,3);
mat(2,3) = []

21. Create a 2 � 3 matrix variable mat. Pass this matrix variable to each of the

following functions andmake sure you understand the result: flip, fliplr, flipud,

and rot90. In how many different ways can you reshape it?

22. What is the difference between fliplr(mat) and mat = fliplr(mat)?

23. Use reshape to reshape the row vector 1:4 into a 2�2 matrix; store this in a

variable named mat. Next, make 2�3 copies of mat using both repelem and

repmat.

24. Create a three-dimensional matrix with dimensions 2� 4� 3 in which the first

“layer” is all 0s, the second is all 1s, and the third is all 5s. Use size to verify the

dimensions.

25. Create a vector x which consists of 20 equally spaced points in the range from –

π to +π. Create a y vector which is sin(x).

26. Create a 3 x 5matrix of random integers, each in the inclusive range from -5 to

5. Get the sign of every element.

27. Find the sum 2+4+6+8+10 using sum and the colon operator.

28. Find the following sum by first creating vectors for the numerators and

denominators:

3

1
+
5

2
+
7

3
+
9

4

79Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

29. Create a matrix and find the product of each row and column using prod.

30. Write a relational expression for a vector variable that will verify that the last

value in a vector created by cumsum is the same as the result returned by sum.

31. Create a vector of five random integers, each in the inclusive range from�10 to

10. Perform each of the following:

n Subtract 3 from each element.

n Count how many are positive.

n Get the cumulative minimum using cummin.

32. Create a 3 � 5 matrix. Perform each of the following:

n Find the maximum value in each column.

n Find the maximum value in each row.

n Find the maximum value in the entire matrix.

33. Find two ways to create a 3 � 5 matrix of all 100s (Hint: use ones and zeros).

34. Assume that you have two vector variables, “veca” and “vecb”, and that they are

both row vectors with the same number of elements. Explain the difference

between the following expressions. Include in your explanation the type of the

result.

veca == vecb

isequal(veca, vecb)

35. Use doc to determine how to get an index for min.

36. Create variables for these two matrices:

A B

1 2 3

4 �1 6

" # 2 4 1

1 3 0

2
4

3
5

Perform the following operations:

A + B
A – B
A .∗ B

37. A vector v stores for several employees of the Green Fuel Cells Corporation,

their hours worked one week followed for each by the hourly pay rate. For

example, if the variable stores

>> v
v =
33.0000 10.5000 40.0000 18.0000 20.0000 7.5000

80 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

then that means the first employee worked 33 hours at $10.50 per hour, the

second worked 40 hours at $18 an hour, and so on. Write code that will

separate this into two vectors, one that stores the hours worked and another

that stores the hourly rates. Then, use the array multiplication operator to

create a vector, storing in the new vector the total pay for every employee.

38. Write code that would count how many elements in a matrix variable mat are

negative numbers. Create a matrix of random numbers, some positive and

some negative, first.

39. A company is calibrating some measuring instrumentation and has measured

the radius and height of one cylinder eight separate times; they are in vector

variables r and h. Find the volume from each trial, which is given by Πr2h. Also,
use logical indexing first to make sure that all measurements were valid (> 0).

>> r = [5.499 5.498 5.5 5.5 5.52 5.51 5.5 5.48];

>> h = [11.1 11.12 11.09 11.11 11.11 11.1 11.08 11.11];

40. For the following matrices A, B, and C:

A¼ 1 4
3 2

� �
B¼

2 1 3
1 5 6
3 6 0

2
4

3
5C¼ 3 2 5

4 1 2

� �

n Give the result of 3*A.
n Give the result of A*C.
n Are there any other matrix multiplications that can be performed? If so,

list them.

41. Create a row vector variable r that has four elements, and a column vector

variable c that has four elements. Perform r*c and c*r.
42. Generate a vector of 20 random integers, each in the range from 50 to 100.

Create a variable evens that stores all of the even numbers from the vector, and

a variable odds that stores the odd numbers.

43. Assume that the function diff does not exist. Write your own expression(s) to

accomplish the same thing for a vector.

44. Create a vector variable vec; it can have any length. Then, write assignment

statements that would store the first half of the vector in one variable and the

second half in another. Make sure that your assignment statements are general,

and work whether vec has an even or odd number of elements (Hint: use a

rounding function such as fix).

45. Create a diagonal matrix from a vector and get its trace.

46. Create a square matrix and determine whether or not it is diagonal. Also,

determine whether or not it is symmetric.

81Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Data Science and Machine Learning

47. What is the difference between the mean and the median of a data set if there

are only two values in it?

48. A student missed one of four exams in a course and the professor decided to

use the “average” of the other three grades for the missed exam grade. Which

would be better for the student: the mean or the median if the three recorded

grades were 99, 88, and 95? What if the grades were 99, 70, and 77?

49. Read in the variables from the built-in .mat file census.mat. Determine what

the variables are named. Find the mean and the median values for the

populations.

82 CHAPTER 2: Vectors and Matrices

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

CHAPTER 3

Introduction to MATLAB Programming

KEY TERMS

computer program

scripts

live script

algorithm

modular program

top-down design

external file

default input device

prompting

default output device

execute/run

high-level languages

machine language

executable

compiler

source code

object code

interpreter

documentation

comments

block comment

comment blocks

input/output (I/O)

user

empty array

error message

formatting

format specifier

place holder

conversion characters

newline character

field width

leading blanks

trailing zeros

plot symbols

markers

line types

toggle

modes

writing to a file

appending to a file

reading from a file

user-defined functions

function call

argument

control

return value

function header

output arguments

input arguments

function body

function definition

local variables

scope of variables

base workspace

local functions

subfunctions

We have now used the MATLAB® product interactively in the Command Win-
dow. That is sufficient when all one needs is a simple calculation. However, in

many cases, quite a few steps are required before the final result can be

obtained. In those cases, it is more convenient to group statements together
in what is called a computer program.

In this chapter, we introduce the simplest MATLAB programs, which are called
scripts. Examples of scripts that customize simple plots illustrate the concept.

CONTENTS

3.1 Algorithms .84

3.2 MATLAB
Scripts85

3.3 Input and
Output89

3.4 Scripts with
Input and
Output97

3.5 Scripts to
Produce and
Customize
Simple
Plots98

3.6 Introduction to
File Input/
Output (Load
and Save) ..104

3.7 User-defined
Functions that
Return a Single
Value109

3.8 Local Functions
in Scripts ..118

3.9 Commands and
Functions ..119

3.10 Introduction
to Live Scripts
...................120

MATLAB. https://doi.org/10.1016/B978-0-323-91750-6.00003-2

83

Copyright © 2023 Elsevier Inc. All rights reserved.

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Input is introduced, both from files and from the user. Output to files and to the

screen is also introduced. Finally, user-defined functions that calculate and
return a single value are described. These topics serve as an introduction to pro-

gramming, which are expanded on in Chapter 6.

In this chapter, we create simple scripts stored in MATLAB code files, which

have an extension of .m. At the end of the chapter, a new, richer script type

called a live scripts is introduced. This topic is expanded in Chapter 6.

3.1 ALGORITHMS

Before writing any computer program, it is useful to first outline the steps that

will be necessary. An algorithm is the sequence of steps needed to solve a prob-
lem. In a modular approach to programming, the problem solution is broken

down into separate steps, and then each step is further refined until the result-

ing steps are small enough to be manageable tasks. This is called the top-down
design approach.

As a simple example, consider the problemof calculating the area of a circle. First,

it is necessary to determine what information is needed to solve the problem,
which in this case is the radius of the circle. Next, given the radius of the circle,

the area of the circle would be calculated. Finally, once the area has been calcu-

lated, it has to be displayed in some way. The basic algorithm then is three steps:

n Get the input: the radius.
n Calculate the result: the area.

n Display the output.

Even with an algorithm this simple, it is possible to further refine each of the

steps. When a program is written to implement this algorithm, the steps would

be as follows.

n Where does the input come from? Two possible choices would be from
an external file, or from the user (the person who is running the program)

who enters the number by typing it from the keyboard. For every system,

one of these will be the default input device (which means, if not specified
otherwise, this is where the input comes from!). If the user is supposed to

enter the radius, the user has to be told to type in the radius (and, in what

units). Telling the user what to enter is called prompting. Therefore, the
input step actually becomes two steps: prompt the user to enter a radius,

and then read it into the program.

n To calculate the area, the formula is needed. In this case, the area of the
circle is πmultiplied by the square of the radius. So, that means the value

of the constant for π is needed in the program.

Summary125

Common
Pitfalls 125

Programming
Style
Guidelines126

84 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n Where does the output go? Two possibilities are: (1) to an external file, or

(2) to the screen. Depending on the system, one of these will be the

default output device. When displaying the output from the program, it
should always be as informative as possible. In other words, instead of

just printing the area (just the number), it should be printed in a nice
sentence format. Also, to make the output even more clear, the input

should be printed. For example, the output might be the sentence: “For a

circle with a radius of 1 inch, the area is 3.1416 inches squared.”

For most programs, the basic algorithm consists of the three steps that have

been outlined:

1. Get the input(s).

2. Calculate the result(s).
3. Display the result(s).

As can be seen here, even the simplest problem solutions can then be refined

further. This is top-down design.

3.2 MATLAB SCRIPTS

Once a problem has been analyzed, and the algorithm for its solution has been

written and refined, the solution to the problem is then written in a particular

programming language. A computer program is a sequence of instructions, in a
given language, that accomplishes a task. To execute or run a program is to have

the computer actually follow these instructions sequentially.

High-level languages have English-like commands and functions, such as “print

this” or “if x < 5 do something.” The computer, however, can interpret com-

mands written only in its machine language. Programs that are written in
high-level languages must therefore be translated into machine language before

the computer can actually execute the sequence of instructions in the program.

A program that does this translation from a high-level language to an executable

file is called a compiler. The original program is called the source code, and the

resulting executable program is called the object code. Compilers translate from

the source code to object code; this is then executed as a separate step.

By contrast, an interpreter goes through the code line-by-line, translating and

executing each command as it goes. MATLAB uses what are called either script
files orMATLAB code files, which have an extension on the file name of .m. These

script files are interpreted rather than compiled. Therefore, the correct terminol-

ogy is that these are scripts, not programs. However, the terms are used some-
what loosely by many people, and documentation in MATLAB itself refers to

scripts as programs. In this book, we reserve the use of the word “program”

853.2 MATLAB Scripts

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

to mean a set of scripts and functions, as described briefly in Section 3.7 and

then in more detail in Chapter 6.

A script is a sequence of MATLAB instructions that is stored in a file with an

extension of .m and saved. The contents of a script can be displayed in the Com-
mandWindow using the type command. The script can be executed, or run, by

simply entering the name of the file (without the .m extension).

Before creating a script, make sure the Current Folder is set to the folder in
which you want to save your files.

The steps involved in creating a script depend on the version of MATLAB.
The easiest method is to click on “New Script” under the HOME tab.

Alternatively, one can click on the down arrow under “New” and then choose

Script (see Fig. 3.1).

A new window will appear called the Editor (which can be docked). In the latest

versions of MATLAB, this window has three tabs: “EDITOR”, “PUBLISH”, and
“VIEW”. Next, simply type the sequence of statements (note that line numbers

will appear on the left).

When finished, save the file by choosing the Save down arrow under the
EDITOR tab. Make sure that the extension of .m is on the file name (this should

be the default). The rules for file names are the same as for variables (they must

start with a letter; after that there can be letters, digits, or the underscore).

If you have entered commands in the Command Window and decide that you

would like to put them into a script, an alternate method for creating a script is
to select the commands in the CommandHistory window, and then right click.

This will give options for creating a script or live script and will then prepopu-

late the editor with those commands. As of R2021b, the editor will now display
code suggestions and complete code automatically and will automatically com-

plete syntax such as parentheses and quotation marks.

FIGURE 3.1

Toolstrip and Editor.

86 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

In our first example, we will create a script called script1.m that calculates the

area of a circle. It assigns a value for the radius, and then calculates the area
based on that radius.

In this book, scripts will be displayed in a box with the name of the file on top.

script1.m

radius = 5

area = pi * (radius^2)

There are two ways to view a script once it has been written: either open the

Editor Window to view it, or use the type command, as shown here, to display
it in the CommandWindow. The type command shows the contents of the file

named script1.m; notice that the .m is not included:

>> type script1
radius = 5
area = pi * (radius^2)

To actually run or execute the script from the Command Window, the name of
the file is entered at the prompt (again, without the .m). When executed, the

results of the two assignment statements are displayed because the output

was not suppressed for either statement.

>> script1
radius =

5
area =

78.5398

Once the script has been executed, youmay find that you want tomake changes
to it (especially if there are errors!). To edit an existing file, there are several

methods to open it. The easiest are:

n Within the Current Folder Window, double-click on the name of the file

in the list of files.

n Choosing the Open down arrow will show a list of Recent Files.

3.2.1 Documentation

It is very important that all scripts be documentedwell so that people can under-

stand what the script does and how it accomplishes its tasks. One way of doc-

umenting a script is to put comments in it. In MATLAB, a comment is anything
from a % to the end of that particular line. Comments are completely ignored

when the script is executed. To put in a comment, simply type the % symbol at

the beginning of a line, or select the comment lines and then click on the Edit
down arrow and click on the% symbol, and the Editor will put in the % symbols

at the beginning of those lines for the comments.

873.2 MATLAB Scripts

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

For example, the previous script to calculate the area of a circle could be

modified to have comments:

circlescript.m

% This script calculates the area of a circle

% First the radius is assigned

radius = 5

% The area is calculated based on the radius

area = pi * (radius^2)

The first comment at the beginning of the script describes what the script does;

this is sometimes called a block comment. Then, throughout the script, com-
ments describe different parts of the script (not usually a comment for every

line, however!). Comments do not affect what a script does, so the output from

this script would be the same as for the previous version.

The help command in MATLAB works with scripts as well as with built-in func-
tions. The first block of comments (defined as contiguous lines at the begin-

ning) will be displayed. For example, for circlescript:

>> help circlescript
This script calculates the area of a circle

The reason that a blank line was inserted in the script between the first two com-

ments is that otherwise both would have been interpreted as one contiguous
comment, and both lines would have been displayed with help. The very first

comment line is called the “H1 line”; it is what the function lookfor searches
through.

PRACTICE 3.1

Write a script to calculate the circumference of a circle (C ¼ 2 π r). Comment the script.

Longer comments, called comment blocks, consist of everything in between

%{ and %}, which must be alone on separate lines. For example:

%{
this is used for a really
Really
REALLY
long comment

%}

88 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

3.3 INPUT AND OUTPUT

The previous script would be much more useful if it were more general, for

example, if the value of the radius could be read from an external source
rather than being assigned in the script. Also, it would be better to have

the script print the output in a nice, informative way. Statements that

accomplish these tasks are called input/output statements, or I/O for short.
Although, for simplicity, examples of input and output statements are

shown here in the Command Window, these statements make the most

sense in scripts.

3.3.1 Input Function

Input statements read in values from the default or standard input device. In

most systems, the default input device is the keyboard, so the input statement

reads in values that have been entered by the user, or the person who is running
the script. To let the user know what they are supposed to enter, the script must

first prompt the user for the specified values.

The simplest input function in MATLAB is called input. The input function is

used in an assignment statement. To call it, a character vector is passed that is
the prompt that will appear on the screen, and whatever the user types will be

stored in the variable named on the left of the assignment statement. For ease of

reading the prompt, it is useful to put a colon and then a space after the prompt.
For example,

>> rad = input('Enter the radius: ')
Enter the radius: 5
rad =

5

In this case, the prompt was printed and then the user entered 5.

If character or character vector input is desired, ‘s’ must be added as a second
argument to the input function:

>> letter = input('Enter a char: ','s')
Enter a char: g
letter =

'g'

If the user enters only spaces or tabs before hitting the Enter key, they are
ignored, and an empty array is stored in the variable:

>> mychar = input('Enter a character: ', 's')
Enter a character:
mychar =

0�0 empty char array

893.3 Input and Output

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

However, if blank spaces are entered before other characters, they are included

in the variable. In the next example, the user hits the space bar four times before
entering “go.” The length function returns the number of characters in the

variable.

>> mystr = input('Enter a word: ', 's')
Enter a word: go
mystr =

' go'
>> length(mystr)
ans =

6

It is also possible for the user to type quotation marks around the entry rather

than including the second argument ‘s’ in the call to the input function.

>> name = input('Enter your name: ')
Enter your name: 'Stormy'
name =

'Stormy'

However, this assumes that the user would know to do this so it is better to sig-

nify that character input is desired in the input function itself. Also, if the ‘s’ is

specified and the user enters quotation marks, these would become part of the
variable.

>> name = input('Enter your name: ','s')
Enter your name: 'Stormy'
name =

' 'Stormy ' '
>> length(name)
ans =

8

The ‘s’ argument in the input function reads into a character vector. To create a

string, it is necessary to typecast the character vector, for example:

>> name = input('Enter your name: ', 's');

QUICK QUESTION!

What would be the result if the user enters blank spaces

after other characters? For example, the user here entered

“xyz ” (four blank spaces):

>> mychar = input('Enter chars: ', 's')

Enter chars: xyz

mychar =

'xyz '

Answer: The space characters would be stored in the

variable.

90 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Enter your name: Stormy
>> stnam = string(name)
stnam =

''Stormy''

Note what happens if character input has not been specified, but the user enters

a letter rather than a number.

>> num = input('Enter a number: ')
Enter a number: t
Error using input
Unrecognized function or variable 't'.
Enter a number: 3
num =

3

MATLAB gave an error message and repeated the prompt. However, if t is the
name of a variable, MATLAB will take its value as the input.

>> t = 11;
>> num = input('Enter a number: ')
Enter a number: t
num =

11

Separate input statements are necessary if more than one input is desired. For

example,

>> x = input('Enter the x coordinate: ');
>> y = input('Enter the y coordinate: ');

Normally in a script, the results from input statements are suppressed with a

semicolon at the end of the assignment statements.

PRACTICE 3.2

Create a script that would prompt the user for a length, and then 'f' for feet or 'm' for meters, and

store both inputs in variables. For example, when executed it would look like this (assuming the

user enters 12.3 and then m):

Enter the length: 12.3

Is that f(eet)or m(eters)?: m

It is also possible to enter a vector. The user can enter any valid vector, using any
valid syntax such as square brackets, the colon operator, or functions such as

linspace.

>> v = input('Enter a vector: ')
Enter a vector: [3 8 22]
v =

3 8 22

913.3 Input and Output

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

3.3.2 Output Statements: disp and fprintf

Output statements display character vectors or strings and/or the results of
expressions, and can allow for formatting, or customizing how they are dis-

played. The simplest output function in MATLAB is disp, which is used to dis-

play the result of an expression or a string or character vector without assigning
any value to the default variable ans. The disp function automatically moves

down to the next line. For example,

>> disp('Hello')
Hello
>> disp(4^3)

64

However, disp does not allow formatting. Formatted output can be printed to

the screen using the fprintf function. For example,

>> fprintf('The value is %d, for sure!\n',4^3)
The value is 64, for sure!
>>

To the fprintf function, first a string or character vector (called the format spec-

ifier) is passed that contains any text to be printed, as well as formatting infor-

mation for the expressions to be printed. The format specifier can be either a
string or a character vector; historically (before R2016b), it was always a char-

acter vector, so that is the way they will typically be shown, both in this book

and in the MATLAB documentation. In this example, the %d is an example of
format information.

The%d is sometimes called a place holder because it specifies where the value of

the expression that is after the format specifier is to be printed. The character in
the place holder is called the conversion character, and it specifies the type of

value that is being printed. There are others, but what follows is a list of the

simple place holders:

%d integer (it stands for decimal integer)
%f float (real number)
%c character (one character)
%s string of characters (string or char vec)

The character ‘\n’ at the end of the format specifier is a special character called
the newline character; what happens when it is printed is that the output that

follows moves down to the next line.

Note

Do not confuse the % in

the place holder with the

symbol used to designate

a comment.

92 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Note that the newline character can also be used in the prompt in the input

statement; for example:

>> x = input('Enter the \nx coordinate: ');
Enter the
x coordinate: 4

However, the newline is the ONLY formatting character allowed in the prompt
in input.

To print two values, there would be two place holders in the format specifier,

and two expressions after the format specifier. The expressions fill in for the

place holders in sequence.

>> fprintf('The int is %d and the char is %c\n', ...
33 – 2, 'x')

The int is 31 and the char is x

A field width can also be included in the place holder in fprintf, which specifies

how many characters total are to be used in printing. For example, %5d would

QUICK QUESTION!

What do you think would happen if the newline character is

omitted from the end of an fprintf statement?

Answer: Without it, the next prompt would end up on the

same line as the output. It is still a prompt, and so an expres-

sion can be entered, but it looks messy as shown here.

>> fprintf('The value is %d, surely!', 4^3)
The value is 64, surely!>> 5 + 3

ans =

8

Note that with the disp function, however, the prompt will

always appear on the next line:

>> disp('Hi')

Hi

>>

Also, note that an ellipsis can be used after a string or char-

acter vector but not in the middle.

QUICK QUESTION!

How can you get a blank line in the output?

Answer: Have two newline characters in a row.

>> fprintf('The value is %d,\n\nOK!\n',4^3)
The value is 64,

OK!

This also points out that the newline character can be any-

where in the format specifier; when it is printed, the output

moves down to the next line.

933.3 Input and Output

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

indicate a field width of 5 for printing an integer and %10s would indicate a

field width of 10 for a string or character vector. For floats, the number of dec-
imal places can also be specified; for example, %6.2f means a field width of 6

(including the decimal point and the two decimal places) with two decimal

places. So, the format would be xxx.xx. For floats, just the number of decimal
places can also be specified; for example, %.3f indicates three decimal places,

regardless of the field width.

>> fprintf('The int is %3d and the float is %6.2f\n',...
5,4.9)

The int is 5 and the float is 4.90

There are many other options for the format specifier. For example, the value
being printed can be left-justified within the field width using aminus sign. The

following example shows the difference between printing the integer 3 using

%5d and using %-5d. The x’s below are used to show the spacing.

>> fprintf('The integer is xx%5dxx and xx%-5dxx\n',3,3)
The integer is xx 3xx and xx3 xx

Note

that if the field width is

wider than necessary,

leading blanks are

printed, and if more dec-

imal places are specified

than necessary, trailing

zeros are printed.

QUICK QUESTION!

What do you think would happen if you tried to print 1234.5678

in a field width of 3 with two decimal places?

>> fprintf('%3.2f\n', 1234.5678)

Answer: It would print the entire 1234, but round the deci-

mals to two places, that is,

1234.57

If the field width is not large enough to print the number, the

field width will be increased. Basically, to cut the number off

would give a misleading result, but rounding the decimal

places does not change the number significantly.

QUICK QUESTION!

What would happen if you use the %d conversion character

but you are trying to print a real number?

Answer: MATLAB will show the result using exponential

notation

>> fprintf('%d\n',1234567.89)

1.234568e+006

Note that, if you want exponential notation, this is not the cor-

rect way to get it; instead, there are conversion characters

that can be used. Use doc to see this option, as well as many

others!

94 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Also, strings and character vectors can be truncated by specifying “decimal places”:

>> fprintf('The string is %s or %.2s\n', "street", "street")
The string is street or st

There are several special characters that can be printed in the format specifier in

addition to the newline character. To print a slash, two slashes in a row are used,

and also to print a single quote, two single quotes in a row are used. To print
one percent sign, use two in a row. Additionally, ‘\t’ is the tab character.

>> fprintf('Try this: tab\t quote ' ' slash \\100%%\n')
Try this: tab quote ' slash \100%

3.3.2.1 Printing Vectors and Matrices
For a vector, if a conversion character and the newline character are in the for-

mat specifier, it will print in a column regardless of whether the vector itself is a
row vector or a column vector.

>> vec = 2:5;
>> fprintf('%d\n', vec)
2
3
4
5

Without the newline character, it would print in a row but the next prompt
would appear on the same line:

>> fprintf('%d', vec)
2345>>

However, in a script, a separate newline character could be printed to avoid this
problem. It is also much better to separate the numbers with spaces.

printvec.m

% This demonstrates printing a vector

vec = 2:5;

fprintf('%d ',vec)

fprintf('\n')

>> printvec
2 3 4 5
>>

If the number of elements in the vector is known, that many conversion

characters can be specified and then the newline:

>> fprintf('%d %d %d %d\n', vec)
2 3 4 5
>>

953.3 Input and Output

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This is not very general, however, and is therefore not preferable.

For matrices, MATLAB unwinds the matrix column by column. For example,

consider the following 2 x 3 matrix:

>> mat = [5 9 8; 4 1 10]
mat =

5 9 8
4 1 10

Specifying one conversion character and then the newline character will print

the elements from the matrix in one column. The first values printed are from

the first column, then the second column, and so on.

>> fprintf('%d\n', mat)
5
4
9
1
8
10

If three of the%d conversion characters are specified, the fprintfwill print three

numbers across on each line of output, but again the matrix is unwound
column-by-column. It again prints first the two numbers from the first column

(across on the first row of output), then the first value from the second column,

and so on.

>> fprintf('%d %d %d\n', mat)
5 4 9
1 8 10

If the transpose of the matrix is printed, however, using the three %d conver-
sion characters, the matrix is printed as it appears when created.

>> fprintf('%d %d %d\n', mat') % Note the transpose
5 9 8
4 1 10

For vectors and matrices, even though formatting cannot be specified, the disp
function may be easier to use in general than fprintf because it displays the

result in a straight-forward manner. For example,

>> mat = [15 11 14; 7 10 13]
mat =

15 11 14
7 10 13

>> disp(mat)
15 11 14
7 10 13

>> vec = 2:5
vec =

2 3 4 5
>> disp(vec)

2 3 4 5

96 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Note that, when loops are covered in Chapter 5, formatting the output of matri-

ces will be easier. For now, however, disp works well.

3.4 SCRIPTS WITH INPUT AND OUTPUT

Putting all of this together now, we can implement the algorithm from the
beginning of this chapter. The following script calculates and prints the area

of a circle. It first prompts the user for a radius, reads in the radius, and then

calculates and prints the area of the circle based on this radius.

circleIO.m

% This script calculates the area of a circle

% It prompts the user for the radius

% Prompt the user for the radius and calculate

% the area based on that radius

fprintf('Note: the units will be inches.\n')

radius = input('Please enter the radius: ');

area = pi * (radius^2);

% Print all variables in a sentence format

fprintf('For a circle with a radius of %.2f inches,\n’,...

radius)

fprintf('the area is %.2f inches squared\n',area)

Executing the script produces the following output:

>> circleIO
Note: the units will be inches.
Please enter the radius: 3.9
For a circle with a radius of 3.90 inches,
the area is 47.78 inches squared

Note that the output from the first two assignment statements (including the

input) is suppressed by putting semicolons at the end. That is usually done
in scripts, so that the exact format of what is displayed by the program is con-

trolled by the fprintf functions.

PRACTICE 3.3

Write a script to prompt the user separately for a character and a number, and print the character

in a field width of 3 and the number left justified in a field width of 8 with three decimal places. Test

this by entering numbers with varying widths.

973.4 Scripts with Input and Output

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

3.5 SCRIPTS TO PRODUCE AND CUSTOMIZE
SIMPLE PLOTS

MATLAB has many graphing capabilities. Customizing plots is often desired,

and this is easiest to accomplish by creating a script rather than typing one com-

mand at a time in the Command Window. For that reason, simple plots and
how to customize them will be introduced in this chapter on MATLAB

programming.

3.5.1 The Plot Function

For now, we start with a very simple graph of one point using the plot function.

The following script, plotonepoint, plots one point. To do this, first values are
given for the x and y coordinates of the point in separate variables. The point

is plotted using a red star by specifying ‘r*’.

This can be done from the Command Window, but it is much easier to use a
script, especially when more is added to customize the plot. The following

shows the contents of the script plotonepoint that accomplishes this. The x coor-

dinate represents the time of day (e.g., 11:00 a.m.) and the y coordinate repre-
sents the temperature (e.g., in degrees Fahrenheit) at that time.

plotonepoint.m

% This is a really simple plot of just one point!

% Create coordinate variables and plot a red '*'

x = 11;

y = 48;

plot(x,y,'r*')

Executing this script brings up a Figure Window with the plot (see Fig. 3.2).

Notice that the point is in themiddle of the plot. The axes, from 10 to 12 for the
x-axis, and from 47 to 49 on the y-axis, are created by MATLAB by default. The

axes can be changed using the axis function. There are many options for the

axis function; for example, just calling it with no arguments returns the values
used for the x- and y-axes ranges.

>> arang = axis
arang =

10 12 47 49

The axis function can also be called by passing a vector consisting of four num-

bers; the first two are theminimum andmaximum values for the x-axis, and the

last two are the minimum and maximum values for the y-axis. For example,
axis([9 12 35 55]) would set the x-axis from 9 to 12 and the y-axis from

35 to 55. Axes can also be turned on and off, and they can be made square

98 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

or equal to each other. A subset of the data can also be shown by limiting the

extent of the axes.

To plot more than one point, x and y vectors are created to store the values of the

(x,y) points. For example, to plot the points (8, 31), (9, 37), (10, 46), (11, 48),
representing temperatures at four different hours onemorning, first an x vector is

created that has the x values (as they range from 8 to 11 in steps of 1, the colon

operator can be used) and then a y vector is created with the y values. The follow-
ing script will create these vectors, put a title and subtitle on the plot (using title

and subtitle), and put labels on the axes (using xlabel and ylabel). See Fig. 3.3.

The subtitle function is new as of R2020b.

timesandtemps.m

% Create coordinate vector variables

x = 8:11;

y = [31 37 46 48];

% Plot points and add labels

plot(x,y,'b*')

title('Time and Temperatures')

subtitle('(Fahrenheit)')

xlabel('Time')

ylabel('Temperature')

% Create some space around the points

axis padded

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12
47

47.2

47.4

47.6

47.8

48

48.2

48.4

48.6

48.8

49

FIGURE 3.2

Plot of one data point.

993.5 Scripts to Produce and Customize Simple Plots

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The axis padded command (new as of R2020b) is used to put space around the
points. Without this, the first and last points would be on the actual axes, which

make them difficult to see.

PRACTICE 3.4

Modify the script timesandtemps to prompt the user for the time and temperature.

Inmany cases, when x and y vectors are created to specify data points, the values
of x range from 1 to the length of y. If that is the case, the x vector is not

necessary. Therefore,

plot(y)

would be the same as

x = 1:length(y);
plot(x,y)

8 8.5 9 9.5 10 10.5 11
Time

30

32

34

36

38

40

42

44

46

48

T
em

pe
ra
tu
re

Time and Temperatures
(Fahrenheit)

FIGURE 3.3

Plot of data points from vectors.

100 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

3.5.1.1 Customizing a Plot: Color, Line Types, Marker Types
Plots can be done in the Command Window if they are really simple. However,

many times it is desired to customize the plot with labels, titles, and so on, so it
makesmore sense to do this in a script. Using the doc function for plotwill show

the many options such as the line types and colors. In the previous scripts, the

character vector ‘r*’ specified a red star for the point type, and ‘b*’ specified a
blue star.

The LineSpec, or line specification, can specify up to three different properties
in a character vector or string, including the color, line type, and the symbol or

marker used for the data points.

The possible colors are:

b blue
g green
r red
c cyan
m magenta
y yellow
k black
w white

Either the single character listed above or the full name of the color can be used

in the string to specify the color.

The plot symbols, or markers, that can be used are:

. point
o circle
x x-mark
+ plus
* star
s square
d diamond
v down triangle
^ up triangle
< left triangle
> right triangle
p pentagram
h hexagram
_ horizontal line
j vertical line

The last two markers are new as of R2020b. If no line type is specified and no

marker type is specified, a solid line is drawn between the points. Line types can
also be specified by the following:

– solid
: dotted
–. dash dot
— dashed
(none) no line

1013.5 Scripts to Produce and Customize Simple Plots

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

3.5.2 Simple Related Plot Functions

Other functions that are useful in customizing plots include clf, figure, hold,
legend, and grid. Brief descriptions of these functions are given here; use help

to find out more about them:

clf: clears the Figure Window by removing everything from it.

figure: creates a new, empty Figure Window when called without any

arguments. Calling it as figure(n) where n is an integer is a way of creating

and maintaining multiple Figure Windows, and of referring to each
individually.

hold: is a toggle that freezes the current graph in the Figure Window, so that

new plots will be superimposed on the current one. Just hold by itself is a
toggle, so calling this function once turns the hold on, and then the next

time turns it off. Alternatively, the commands hold on and hold off can

be used.

legend: displays strings or character vectors passed to it in a legend box in
the Figure Window, in order of the plots in the Figure Window.

grid: displays grid lines on a graph. Called by itself, it is a toggle that turns

the grid lines on and off. Alternatively, the commands grid on and grid off

can be used.

Also, there are many plot types. We will see more in Chapter 12, but other sim-
ple plot types are bar charts, and straight line plots xline and yline. Introduced

in R2018b, yline creates horizontal line(s) at specified y coordinate(s), and

xline creates vertical line(s) at specified x coordinate(s).

For example, the following script creates two separate Figure Windows. First, it

clears the Figure Window. Then, it creates an x vector and a y vector. In the first

Figure Window, it plots the y values using a bar chart. In the second
Figure Window, it plots the y values as black circles, puts hold on so that the

next graph will be superimposed, and plots a horizontal line. It also pads

the axes and uses a grid. Labels and titles are omitted in this case, as it is generic
data.

plot2figs.m

% This creates 2 different plots, in 2 different

% Figure Windows, to demonstrate some plot features

clf

x = 1:5; % Not necessary

y = [2 11 6 9 3];

% Put a bar chart in Figure 1

figure(1)

bar(x,y)

102 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

% Plot the points and use yline in Figure 2

figure(2)

plot(x,y,'ko')

hold on

yline(5)

axis padded

grid on

Running this script will produce two separate Figure Windows. If there are no
other active Figure Windows, the first, which is the bar chart, will be in the one

titled “Figure 1” in MATLAB. The second will be in “Figure 2”. See Fig. 3.4 for

both plots.

PRACTICE 3.5

Modify the plot2figs script to add some labels.

The ability to pass a vector to a function and have the function evaluate every ele-
ment of the vector can be very useful in creating plots. For example, the following

script graphically displays the difference between the sin and cos functions:

1 2 3 4 5
0

2

4

6

8

10

12

FIGURE 3.4A

Bar chart produced by script.

1 1.5 2 2.5 3 3.5 4 4.5 5

2

3

4

5

6

7

8

9

10

11

FIGURE 3.4B

Plot produced by script, with a grid.

1033.5 Scripts to Produce and Customize Simple Plots

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

sinncos.m

% This script plots sin(x) and cos(x) in the same Figure Window

% for values of x ranging from 0 to 2*pi

clf

x = 0: 2*pi/40: 2*pi;

y = sin(x);

plot(x,y)

hold on

y = cos(x);

plot(x,y)

axis padded

legend('sin', 'cos')

xlabel('x')

ylabel('sin(x) or cos(x)')

title('sin and cos on one graph')

The script creates an x vector; iterating through all of the values from 0 to 2*π
in steps of 2*π/40 gives enough points to get a good graph. It then finds the

sine of each x value, and plots these. The command hold on freezes this in the
FigureWindow so the next plot will be superimposed. Next, it finds the cosine

of each x value and plots these points. The legend function creates a legend;

the first character vector is paired with the first plot, and the second character
vector with the second plot. Running this script produces the plot seen in

Fig. 3.5.

Note that instead of using hold on, both functions could have been plotted

using one call to the plot function:

plot(x,sin(x),x,cos(x))

PRACTICE 3.6

Write a script that plots exp(x) and log(x) for values of x ranging from 0 to 3.5.

3.6 INTRODUCTION TO FILE INPUT/OUTPUT
(LOAD AND SAVE)

We have seen the use of load and save to read from/write to MAT-files. This

section is different; we will be working with data files that only store data,
not variables with their names and values.

In many cases, input to a script will come from a data file that has been created
by another source. Also, it is useful to be able to store output in an external file

that can be manipulated and/or printed later. In this section, the simplest

104 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

methods used to read from an external data file and also to write to an external

data file will be demonstrated.

There are basically three different operations, or modes on files. Files can be:

n read from

n written to

n appended to

Writing to a filemeans writing to a file from the beginning. Appending to a file is
also writing, but starting at the end of the file rather than the beginning. In other

words, appending to a file means adding to what was already there.

There are many different file types, which use different filename extensions. For
now, we will keep it simple and just work with .dat or .txt files when working

with data, or text, files. There are several methods for reading from files and

writing to files; we will, for now, use the load function to read and the save
function to write to files. More file types and functions for manipulating them

will be discussed in Chapter 9.

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

si
n(

x)
 o

r
co

s(
x)

sin and cos on one graph

sin
cos

FIGURE 3.5

Plot of sin and cos in one Figure Window with a legend.

1053.6 Introduction to File Input/Output (Load and Save)

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

3.6.1 Writing Data to a File

The save command can be used to write data from a matrix to a data file, or to
append to a data file. The format is:

save filename matrixvariablename –ascii

The “-ascii” qualifier is used when creating a text or data file. For example, the

following creates a matrix and then saves the values from the matrix variable to
a data file called testfile.dat:

>> mymat = rand(2,3)
mymat =

0.4565 0.8214 0.6154
0.0185 0.4447 0.7919

>> save testfile.dat mymat -ascii

This creates a file called “testfile.dat” that stores the numbers:

0.4565 0.8214 0.6154
0.0185 0.4447 0.7919

The type command can be used to display the contents of the file; note that

scientific notation is used:

>> type testfile.dat

4.5646767e-001 8.2140716e-001 6.1543235e-001
1.8503643e-002 4.4470336e-001 7.9193704e-001

3.6.2 Appending Data to a Data File

Once a text file exists, data can be appended to it. The format is the same as the

preceding, with the addition of the qualifier “-append”. For example, the fol-
lowing creates a new random matrix and appends it to the file that was just

created:

>> mat2 = rand(3,3)
mymat =

0.9218 0.4057 0.4103
0.7382 0.9355 0.8936
0.1763 0.9169 0.0579

>> save testfile.dat mat2 -ascii –append

This results in the file “testfile.dat” containing the following:

0.4565 0.8214 0.6154
0.0185 0.4447 0.7919
0.9218 0.4057 0.4103
0.7382 0.9355 0.8936
0.1763 0.9169 0.0579

Note that, although technically any sizematrix could be appended to this data file,
to be able to read it back into amatrix later, there would have to be the same num-

ber of values on every row (or, in other words, the same number of columns).

Note

that if the file already

exists, the save com-

mand will overwrite the

file; save always writes

from the beginning of

a file.

106 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PRACTICE 3.7

Prompt the user for the number of rows and columns of a matrix, create a matrix with that many

rows and columns of random integers, and write it to a file.

3.6.3 Reading From a File

Reading from a file is accomplished using load. Once a file has been created (as
in the preceding), it can be read into amatrix variable. If the file is a data file, the

load command will read from the file “filename.ext” (e.g., the extension

might be .dat) and create a matrix with the same name as the file. For example,
if the data file “testfile.dat” had been created as shown in the previous

section, this would read from it, and store the result in a matrix variable called

testfile:

>> clear
>> load testfile.dat
>> who
Your variables are:
testfile
>> testfile
testfile =

0.4565 0.8214 0.6154
0.0185 0.4447 0.7919
0.9218 0.4057 0.4103
0.7382 0.9355 0.8936
0.1763 0.9169 0.0579

The load command works only if there are the same number of values in each

line, so that the data can be stored in a matrix, and the save command only
writes from amatrix to a file. If this is not the case, lower-level file I/O functions

must be used; these will be discussed in Chapter 9.

3.6.3.1 Example: Load From a File and Plot the Data
As an example, a file called “timetemp.dat” stores two lines of data. The first line

is the times of day, and the second line is the recorded temperature at each of

those times. The first value of 0 for the time represents midnight. For example,
the contents of the file might be:

0 3 6 9 12 15 18 21
55.5 52.4 52.6 55.7 75.6 77.7 70.3 66.6

The following script loads the data from the file into a matrix called timetemp. It

then separates the matrix into vectors for the time and temperature, and then
plots the data using black star (*) symbols.

1073.6 Introduction to File Input/Output (Load and Save)

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

timetempprob.m

% This reads time and temperature data for an afternoon

% from a file and plots the data

load timetemp.dat

% The times are in the first row, temps in the second row

time = timetemp(1,:);

temp = timetemp(2,:);

% Plot the data and label the plot

plot(time,temp,'k*')

xlabel('Time')

ylabel('Temperature')

title('Temperatures one afternoon')

axis padded

Running the script produces the plot seen in Fig. 3.6.

To create the data file, the Editor in MATLAB can be used; it is not necessary to

create a matrix and save it to a file. Instead, just enter the numbers in a new

script file, and Save As timetemp.dat, making sure that the Current Folder is set.

0 5 10 15 20
Time

50

55

60

65

70

75

80

T
em

pe
ra

tu
re

Temperatures one afternoon

FIGURE 3.6

Plot of temperature data from a file.

108 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PRACTICE 3.8

The sales (in billions) for two separate divisions of the ABC Corporation for each of the four quar-

ters of 2021 are stored in a file called “salesfigs.dat”:

1.2 1.4 1.8 1.3

2.2 2.5 1.7 2.9

n First, create this file (just type the numbers in the Editor, and Save As “salesfigs.dat”).

n Then, write a script that will

n load the data from the file into a matrix.

n separate this matrix into two vectors.

n create the plot seen in Fig. 3.7 (which uses black circles and stars as the plot symbols).

3.7 USER-DEFINED FUNCTIONS THAT RETURN
A SINGLE VALUE

We have already seen the use of many functions in MATLAB. We have used
many built-in functions such as sin, fix, abs, and double. In this section,

user-defined functions will be introduced. These are functions that the pro-

grammer defines, and then uses, in either the Command Window or in a
script.

There are several different types of functions. For now, we will concentrate on

the kind of function that calculates and returns a single result. Other types of
functions will be introduced in Chapter 6.

QUICK QUESTION!

Sometimes files are not in the format that is desired. For

example, a file “expresults.dat” has been created that has

some experimental results, but the order of the values is

reversed in the file:

4 53.4

3 44.3

2 50.0

1 55.5

How could we create a new file that reverses the order?

Answer: We can load from this file into a matrix, use the

flipud function to “flip” the matrix up to down, and then save

this matrix to a new file:

>> load expresults.dat

>> expresults

expresults =

4.0000 53.4000

3.0000 44.3000

2.0000 50.0000

1.0000 55.5000

>> correctorder = flipud(expresults)

correctorder =

1.0000 55.5000

2.0000 50.0000

3.0000 44.3000

4.0000 53.4000

>> save neworder.dat correctorder – ascii

1093.7 User-Defined Functions that Return a Single Value

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

First, let us review some of what we already know about functions, including

the use of built-in functions. Although by now, the use of these functions is

straightforward, explanations will be given in some detail here in order to com-
pare to and contrast with the use of user-defined functions.

The length function is an example of a built-in function that calculates a single

value; it returns the length of a vector. As an example,

length(vec)

is an expression that represents the number of elements in the vector vec. This
expression could be used in the CommandWindow or in a script. Typically, the

value returned from this expression might be assigned to a variable:

>> vec = 1:3:10;
>> lv = length(vec)
lv =

4

Alternatively, the length of the vector could be printed:

>> fprintf('The length of the vector is %d\n', length(vec))
The length of the vector is 4

1 1.5 2 2.5 3 3.5 4
Quarter

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

S
al

es
 (

bi
lli

on
s)

ABC Corporation Sales

Year 2021

Division A
Division B

FIGURE 3.7

Plot of sales data from file.

110 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The function call to the length function consists of the name of the function,

followed by the argument in parentheses. The function receives as input the
argument and returns a result. What happens when the call to the function

is encountered is that control is passed to the function itself (in other words,

the function begins executing). The argument(s) are also passed to the function.

The function executes its statements and does whatever is necessary (the

actual contents of the built-in functions are not generally known or seen
by the user) to determine the number of elements in the vector. Because

the function is calculating a single value, this result is then returned and it

becomes the value of the expression. Control is also passed back to the expres-
sion that called it in the first place, which then continues (e.g., in the first

example, the value would then be assigned to the variable lv and in the second

example, the value was printed).

3.7.1 Function Definitions

There are different ways to organize scripts and functions, but, for now, every

function that we write will be stored in a separate file. Like scripts, function files

have an extension of .m. Although to enter function definitions in the Editor, it
is possible to choose the New down arrow and then Function, it will be easier

for now to type in the function by choosing New Script (this ignores the

defaults that are provided when you choose Function). Also, as of R2021b,
“Refactor” in the Editor allows code to be converted to a function.

A function in MATLAB that returns a single result consists of the following.

n The function header (the first line), comprised of:

n the reserved word function.
n the name of the output argument followed by the assignment operator

(¼), as the function returns a result.

n the name of the function (important: This should be the same as the
name of the file in which this function is stored to avoid confusion).

n the input arguments in parentheses, which correspond to the arguments

that are passed to the function in the function call.
n A comment that describes what the function does (this is printed when

help is used).

n The body of the function, which includes all statements and eventually
must put a value in the output argument.

n end at the end of the function (note that this is not necessary in many

cases in current versions of MATLAB, but it is considered good style
anyway).

The general form of a function definition for a function that calculates and

returns one value looks like this:

1113.7 User-Defined Functions that Return a Single Value

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

functionname.m

function outputargument = functionname(input arguments)
% Comment describing the function

Statements here; these must include putting a value in the output
argument

end % of the function

For example, the following is a function called calcarea that calculates and

returns the area of a circle; it is stored in a file called calcarea.m.

calcarea.m

function area = calcarea(rad)
% calcarea calculates the area of a circle
% Format of call: calcarea(radius)
% Returns the area

area = pi * rad * rad;
end

A radius of a circle is passed to the function to the input argument rad; the func-

tion calculates the area of this circle and stores it in the output argument area.

In the function header, we have the reserved word function, then the output
argument area followed by the assignment operator ¼, then the name of the

function (the same as the name of the file), and then the input argument

rad, which is the radius. As there is an output argument in the function header,
somewhere in the body of the function wemust put a value in this output argu-

ment. This is how a value is returned from the function. In this case, the function

is simple and all we have to do is assign to the output argument area the value of
the built-in constant pi multiplied by the square of the input argument rad.

The function can be displayed in the Command Window using the type

command.

>> type calcarea

function area = calcarea(rad)
% calcarea calculates the area of a circle
% Format of call: calcarea(radius)
% Returns the area

area = pi * rad * rad;
end

3.7.2 Calling a Function

The following is an example of a call to this function in which the value

returned is stored in the default variable ans:

>> calcarea(4)
ans =

50.2655

112 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Technically, calling the function is done with the name of the file in which the

function resides. To avoid confusion, it is easiest to give the function the same
name as the file name, so that is how it will be presented in this book. In this

example, the function name is calcarea and the name of the file is calcarea.m.

The result returned from this function can also be stored in a variable in an
assignment statement; the name could be the same as the name of the output

argument in the function itself, but that is not necessary. Therefore, for exam-

ple, either of these assignments would be fine:

>> area = calcarea(5)
area =

78.5398

>> myarea = calcarea(6)
myarea =

113.0973

The output could also be suppressed when calling the function:

>> mya = calcarea(5.2);

The value returned from the calcarea function could also be printed using either
disp or fprintf:

>> disp(calcarea(4))
50.2655

>> fprintf('The area is %.1f\n', calcarea(4))
The area is 50.3

Note

that the printing is not

done in the function itself;

rather, the function

returns the area and then

an output statement can

print or display it.

QUICK QUESTION!

Could we pass a vector of radii to the calcarea function?

Answer: This function was written assuming that the argu-

ment was a scalar, so calling it with a vector instead would

produce an error message. This is because the * was used

for multiplication in the function, but .* must be used when

multiplying vectors term by term. Changing this in the func-

tion would allow either scalars or vectors to be passed to this

function:

calcareaii.m

function area = calcareaii(rad)

% calcareaii returns the area of a circle

% The input argument can be a vector of

radii

% Format: calcareaii(radiiVector)

area = pi * rad .* rad;

end

>> calcareaii(1:3)

ans =

3.1416 12.5664 28.2743

>> calcareaii(4)

ans =

50.2655

Note that the .* operator is only necessary when multiplying

the radius vector by itself. Multiplying by pi is scalar multipli-

cation, so the .* operator is not needed there. We could have

also used:

area = pi * rad .^ 2;

1133.7 User-Defined Functions that Return a Single Value

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Using helpwith either of these functions displays the contiguous block of com-
ments under the function header (the block comment). It is useful to put the

format of the call to the function in this block comment:

>> help calcarea
calcarea calculates the area of a circle
Format of call: calcarea(radius)
Returns the area

Suggested corrections for invalid filenames in the CommandWindow work for

user-defined files.

>> clacarea(3)
Undefined function or variable 'clacarea'.
Did you mean:
>> calcarea(3)

Many organizations have standards regarding what information should be
included in the block comment in a function. These can include:

n Name of the function

n Description of what the function does
n Format of the function call

n Description of input arguments

n Description of output argument
n Description of variables used in function

n Programmer name and date written

n Information on revisions

Although this is excellent programming style, for the most part in this book
these will be omitted simply to save space. Also, documentation in MATLAB

suggests that the name of the function should be in all uppercase letters in
the beginning of the block comment. However, this can be somewhat mislead-

ing in that MATLAB is case-sensitive and typically lowercase letters are used for

the actual function name.

3.7.3 Calling a User-Defined Function From a Script

Now, we will modify our script that prompts the user for the radius and calcu-

lates the area of a circle to call our function calcarea to calculate the area of the
circle rather than doing this in the script.

114 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

circleCallFn.m

% This script calculates the area of a circle

% It prompts the user for the radius

radius = input('Please enter the radius: ');

% It then calls our function to calculate the

% area and then prints the result

area = calcarea(radius);

fprintf('For a circle with a radius of %.2f,',radius)

fprintf(' the area is %.2f\n',area)

Running this will produce the following:

>> circleCallFn
Please enter the radius: 5
For a circle with a radius of 5.00, the area is 78.54

3.7.3.1 Simple Programs
In this book, a script that calls function(s) is what we will call a MATLAB pro-

gram. In the previous example, the program consisted of the script circleCallFn

and the function it calls, calcarea. A simple program, consisting of a script that
calls a function to calculate and return a value, looks like the format shown in

Fig. 3.8.

It is also possible for a function to call another (whether built-in or user-defined).

3.7.4 Passing Multiple Arguments

In many cases it is necessary to pass more than one argument to a function. For

example, the volume of a cone is given by

V¼ 1
4πr

2h

where r is the radius of the circular base and h is the height of the cone. There-
fore, a function that calculates the volume of a cone needs both the radius and

the height:

Get input

Call fn to calculate
result

Print result

function out = fn (in)
out = value basedon in;
end

script.m

fn.m

FIGURE 3.8

General form of a simple program.

1153.7 User-Defined Functions that Return a Single Value

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

conevol.m

function outarg = conevol(radius, height)

% conevol calculates the volume of a cone

% Format of call: conevol(radius, height)

% Returns the volume

outarg = (pi/3) * radius .^ 2 .* height;

end

Because the function has two input arguments in the function header, two
values must be passed to the function when it is called. The order makes a dif-

ference. The first value that is passed to the function is stored in the first input

argument (in this case, radius) and the second value in the function call is
passed to the second input argument in the function header.

This is very important: the arguments in the function call must correspond one-

to-one with the input arguments in the function header.

Here is an example of calling this function. The result returned from the func-
tion is simply stored in the default variable ans.

>> conevol(4,6.1)
ans =

102.2065

In the next example, the result is instead printed with a format of two decimal

places.

>> fprintf('The cone volume is %.2f\n',conevol(3, 5.5))
The cone volume is 51.84

Note that by using the array exponentiation and multiplication operators, it

would be possible to pass arrays for the input arguments, as long as the dimen-

sions are the same.

QUICK QUESTION!

Nothing is technically wrong with the following function, but

what about it does not make sense?

fun.m

function out = fun(a,b,c)

out = a*b;

end

Answer: Why pass the third argument if it is not used?

116 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PRACTICE 3.9

Write a script that will prompt the user for the radius and height, call the function conevol to cal-

culate the cone volume, and print the result in a nice sentence format. Therefore, the programwill

consist of a script and the conevol function that it calls.

PRACTICE 3.10

For a project, we need some material to form a rectangle. Write a function calcrectarea that will

receive the length and width of a rectangle in inches as input arguments and will return the area

of the rectangle. For example, the function could be called as shown, in which the result is stored

in a variable and then the amount of material required is printed, rounded up to the nearest

square inch.

>> ra = calcrectarea(3.1, 4.4)

ra =

13.6400

>> fprintf('We need %d sq in.\n', ceil(ra))

We need 14 sq in.

3.7.5 Functions With Local Variables

The functions discussed thus far have been very simple. However, inmany cases

the calculations in a function are more complicated, andmay require the use of

extra variables within the function; these are called local variables.

For example, a closed cylinder is being constructed of a material that costs a

certain dollar amount per square foot. We will write a function that will calcu-

late and return the cost of the material, rounded up to the nearest square foot,
for a cylinder with a given radius and a given height. The total surface area for

the closed cylinder is

SA¼ 2πrh + 2πr2

For a cylinder with a radius of 32 inches, height of 73 inches, and cost per

square foot of the material of $4.50, the calculation would be given by the
following algorithm.

n Calculate the surface area SA ¼ 2*π*32*73 + 2*π*32*32 inches

squared.

n Convert the SA from square inches to square feet ¼ SA/144.
n Calculate the total cost ¼ SA in square feet * cost per square foot.

n The function includes local variables to store the intermediate results.

1173.7 User-Defined Functions that Return a Single Value

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

cylcost.m

function outcost = cylcost(radius, height, cost)

% cylcost calculates the cost of constructing a closed

% cylinder

% Format of call: cylcost(radius, height, cost)

% Returns the total cost

% The radius and height are in inches

% The cost is per square foot

% Calculate surface area in square inches

surf_area = 2 * pi * radius .* height + 2 * pi * radius .^ 2;

% Convert surface area in square feet and round up

surf_areasf = ceil(surf_area/144);

% Calculate cost

outcost = surf_areasf .* cost;

end

The following shows examples of calling the function:

>> cylcost(32,73,4.50)
ans =

661.5000

>> fprintf('The cost would be $%.2f\n', cylcost(32,73,4.50))
The cost would be $661.50

3.7.6 Introduction to Scope

It is important to understand the scope of variables, which is where they are
valid. More will be described in Chapter 6, but, basically, variables used in a

script are also known in the Command Window and vice versa. All variables

used in a function, however, are local to that function. Both the Command
Window and scripts use a common workspace, the base workspace. Functions,

however, have their own workspaces. This means that when a script is executed,

the variables can subsequently be seen in the Workspace Window and can be
used from the CommandWindow. This is not the case with functions, however.

3.8 LOCAL FUNCTIONS IN SCRIPTS

In Section 3.7.3, a program was described as a script that calls a function; both
the script and the function were stored in separate code files. Figure 3.8 illus-

trated this organization. However, it is possible to include functions within a

script file, at the end of the script file. Functions that are contained within a
script code file are local functions to that script and can only be called from

within the script code file. They are sometimes called subfunctions. All local

118 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

functions, like other user-defined functions, have their own workspaces. Even

though a local function is contained in a script, the script uses the base work-
space whereas local functions use their own workspaces.

The following script code file includes a local function:

testlocfn.m

x = 33;

y = 11;

a = locfn(x);

fprintf('a is %d\n', a)

fprintf('x is %d\n', x)

function out = locfn(in)

x = in + 5;

out = x;

end

The script will create the variables x, y, and a in the base workspace. Although
the function is executing, it will have in, x, and out in its workspace, but that

workspace only exists while the function is executing. Therefore, the value of

x that is printed from the script is the value assigned in the script in the base
workspace.

>> testlocfn
a is 38
x is 33

An advantage of having a local function is that it cuts down on the number of
code files. If a function is only going to be called from a script (and it is not

desired to call it from the Command Window or from another function), then

it is easier to include it in the same code file as the script. Another use for a local
function is to have an easy way of testing the function when the function is first

being written; later when finished the function could be placed in its own code

file. The disadvantage of a local function is that it can only be called fromwithin
the script code file. This means that it can be called from within the script, or

from another local function within the script. The order of the local functions

does not matter if there are multiple local functions, but they must appear after
the script code.

3.9 COMMANDS AND FUNCTIONS

Some of the commands that we have used (e.g., format, type, save, and load)

are just shortcuts for function calls. If all of the arguments to be passed to a func-

tion are strings or character vectors, and the function does not return any
values, it can be used as a command. For example, the following produce

the same results:

1193.9 Commands and Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> type script1

radius = 5
area = pi * (radius^2)

>> type('script1')

radius = 5
area = pi * (radius^2)

Using load as a command creates a variable with the same name as the file. If a

different variable name is desired, it is easiest to use the functional form of load.

For example,

>> type pointcoords.dat

3.3 1.2
4 5.3

>> points = load('pointcoords.dat')
points =

3.3000 1.2000
4.0000 5.3000

This stores the result in a variable points rather than pointcoords.

3.10 INTRODUCTION TO LIVE SCRIPTS

An alternate type of script is called a live script and is created using the Live Edi-
tor. A live script is muchmore dynamic than a simple script; it can embed equa-

tions, images, and hyperlinks in addition to formatted text. Instead of having

graphs in separate windows, the graphics are shown next to the code that cre-
ated them. It is also possible to put the graphs inline, under the code.

Equations can be entered in LaTeX format.

The scripts that we have seen so far have been simple scripts, stored in files that
have an extension of .m. Live scripts are instead stored using the .mlx file

format.

There are several ways to create a live script. The simplest is to click on New Live

Script, or on New, then Live Script. A simple script can also be transformed into

a live script by choosing Save As and then Live Script. Right clicking on a set of
commands from the CommandHistory window also pops up an option to save

as a Live Script. The Live Script toolstrip is shown in Fig. 3.9.

An example of a live script is shown in Fig. 3.10. In this untitled live

script, there is text that includes an equation, then code, more text which
includes an equation, and then more code. To the right, there are plots cre-

ated by the code blocks. To create this Live Script, the following steps are to

be taken:

Note

Notice that there are

sections for “Text”,

“Code”, “Section”, and

“Run”, among others.

120 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n Once in the Live Editor, the default section is a Code section, so click on
Text to make it text instead. Enter the text “Let’s create…”.

n For the equation, click on the Insert tab and then Equation, and enter the

equation.
n Click on Section Break.

n Again, the default section type is code, which is what we want. Enter the

lines of code.
n Click on Section Break, then Text.

n Enter the text including the equation.

n Click on Section Break.
n Enter the code.

n Then, to run the code and produce the plots, click on the Run Button.

All of the code from the live script can be executed by choosing the Run button.

Alternatively, individual sections can be executed by clicking on the bar to the

FIGURE 3.9

Live Editor Toolstrip.

FIGURE 3.10

Live script with plots.

1213.10 Introduction to Live Scripts

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

left of the section (as in the highlighted bar to the left of the first code section in

Fig. 3.10). Also, by default the results of the code sections are shown to the

right. To the right of that, there are three icons that can be used to modify
the display: “Output on Right”, “Output Inline”, and “Hide Code”. This live

script could then be saved, for example as sintest.mlx.

Functions can be included in Live Scripts. When a function is entered into a

code section of a live script, a section break is automatically created before

the function, as seen in Fig. 3.11. The function must appear after all of the
script code.

Once a live script has been completed, it can be sharedwith others as an .mlx file,

or it can be converted to a PDF or HTML format. To do this, click on the down
arrow under “Save”, and then either “Export to PDF” or “Export to HTML”.

Live scripts can also be converted to code files with the .m extension by choos-
ing Save As and then choosing MATLAB Code file from the drop-down menu

for the Format.

Using the type command on a live script will show just the code sections. The

entire contents of the .mlx file can be seen from the Live Editor.

>> type sintest.mlx

x = –pi:0.01:pi;
y = x.^2.*sin(x);

FIGURE 3.11

Function in Live Script.

122 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

plot(x,y,'r')
y = sin(x);
plot(x,y,'b')

More on live scripts, including tasks that can be utilized and that can auto-
generate code, will be seen in Section 6.6.

PRACTICE 3.11

Create a live script with text, equations, and code to produce at least one plot.

Data Science and Machine Learning Supplement
Correlation Between Two Vectors
Previously, we have explored some analyses on a single vector variable. It is also

important to examine the correlation between two (or more) vector variables.

One method of visualizing the correlation between two vector variables is to

plot them. We could use plot for this, or a scatter plot. With a scatterplot,

the x-axis represents one variable and the y-axis is the other variable. Note that
the variables must have the same length.

Here is an example:

>> x = 1:10;
>> y = [2, 2.7, 3.1, 4, 4.5, 5.3, 5.9, 6.4, 7.1, 9];
>> scatter(x,y)

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

1233.10 Introduction to Live Scripts

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

We can see that there is a high correlation between these two vectors. When x

rises, so does y; this is called positive correlation. If, on the other hand, y falls
when x rises, this would be called a negative correlation.

A correlation coefficient measures the association between two vectors. The

values range from �1 to +1. Negative numbers indicate negatively correlated

vectors, and positive numbers indicate positively correlated vectors.
A correlation coefficient of 0 means that there is no correlation between the

vectors. If the numbers in the x and y vectors are identical, for example, they
would be perfectly correlated and have a correlation coefficient of 1.

A correlation coefficient matrix shows the vectors on the rows and columns,

and the correlation coefficients of the vectors. The function corrcoef accom-
plishes this:

>> corrcoef(x,y)
ans =

1.0000 0.9872
0.9872 1.0000

The x vector is represented by the first row and first column, and the y vector is
the second row and the second column. So, on the first row the number 1.0000

in the upper left is the correlation between x and x, the number 0.9872 is the
correlation between x and y. On the second row, the 0.9872 is the correlation

between y and x, and the number 1.0000 on the bottom right is the correlation

between y and y. Of course, x is perfectly correlated with x and y is perfectly
correlated with y, which is why those values are 1. A correlation coefficient

of 0.9872 (which is redundantly displayed twice) shows that x and y are also

positively correlated.

This shows that the two vectors are highly correlated. It is very important, how-

ever, to separate correlation from causality when working with data sets. For

example, if we are working with patient data, we might have vectors that rep-
resent different characteristics of the patients (these are called features), such as

age, weight, blood type, whether or not they have heart problems, etc. We

would have this information for all patients, so all of the feature vectors would
have the same length. Finding correlations is of great interest in Machine Learn-

ing, but correlations may or may not indicate causality. For example, we might

find a high correlation between weight and heart problems, and this may be an
indication that weight can be a cause of heart problems (or vice versa!). It may

also just be pure coincidence, however.

Normalizing Data
To make sure that one numerical feature vector does not dominate over others

by having much larger numbers, it may be wise to normalize the data. Normal-
izing takes the original range of values and converts it to a particular range, fre-

quently from 0 to 1. To accomplish this, one can subtract the minimum value

124 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

from each number and divide by the original range (the minimum subtracted

from the maximum). In the following example, two feature vectors are simu-
lated using random integers in different ranges, and then both are normalized.

>> feat1 = randi([1, 10], 1,8)
feat1 =

3 10 2 9 6 10 1 5
>> normf1 = (feat1-min(feat1))/(max(feat1)-min(feat1))
normf1 =

0.2222 1.0000 0.1111 0.8889 0.5556 1.0000 0 0.4444
>> feat2 = randi([1, 100], 1, 8)
feat2 =

11 97 1 78 82 87 9 40
>> normf2 = (feat2-min(feat2))/(max(feat2)-min(feat2))
normf2 =

0.1042 1.0000 0 0.8021 0.8438 0.8958 0.0833 0.4062

Now the two feature vectors have the same range of values, so one will not take
on more importance than the other when running a ML algorithm.

n Explore Other Interesting Features

Note that this chapter serves as an introduction to several topics, most of

which will be covered in more detail in future chapters. Before getting to
those chapters, the following are some things you may wish to explore.

n The help command can be used to see short explanations of built-in
functions. At the end of this, a doc page link is also listed. These docu-

mentations pages frequently have much more information, and useful

examples. They can also be reached by typing “doc fnname” where
fnname is the name of the function.

n Look at formatSpec on the doc page on the fprintf function for more

ways in which expressions can be formatted, e.g., padding numbers with
zeros and printing the sign of a number.

n Use the Search Documentation to find the conversion characters used to

print other types, such as unsigned integers and exponential notation.n

SUMMARY

COMMON PITFALLS

n Spelling a variable name different ways in different places in a script or

function.
n Forgetting to add the second ‘s’ argument to the input function when

character input is desired.

125Common Pitfalls

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n Not using the correct conversion character when printing.

n Confusing fprintf and disp. Remember that only fprintf can format.

PROGRAMMING STYLE GUIDELINES

n Especially for longer scripts and functions, start by writing an algorithm.
n Use comments to document scripts and functions, as follows:

n a block of contiguous comments at the top to describe a script

n a block of contiguous comments under the function header for
functions

n comments throughout any code file (script or function) to describe

each section
n Make sure that the “H1” comment line has useful information.

n Use your organization’s standard style guidelines for block comments.

n Use mnemonic identifier names (names that make sense, e.g., radius
instead of xyz) for variable names and for file names.

n Make all output easy to read and informative.

n Put a newline character at the end of every format specifier printed by
fprintf so that the next output or the prompt appears on the line below.

n Put informative labels on the x- and y-axes, and a title on all plots.

n Keep functions short, typically no longer than one page in length.
n Suppress the output from all assignment statements in functions and

scripts.

n Functions that return a value do not normally print the value; it should
simply be returned by the function.

n Use the array operators .*, ./, .\, and .^ in functions so that the input

arguments can be arrays and not just scalars.

MATLAB Reserved Words

function end

MATLAB Functions and Commands

type
input
disp
fprintf
display

plot
xlabel
ylabel
title
axis

clf
figure
hold
legend
grid

bar
load
save

MATLAB Operators

comment % comment block %{, %}

126 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Exercises

1. Using the top-down design approach, write an algorithm for making a

sandwich.

2. Write a simple script that will calculate the volume of a hollow sphere,

4π
3

r30 � r3i
� �

where ri is the inner radius and ro is the outer radius. Assign a value to a var-

iable for the inner radius, and also assign a value to another variable for the

outer radius. Then, using these variables, assign the volume to a third variable.

Include comments in the script. Use help to view the block comment in your

script.

3. Write a script that will prompt the user for a number and print it twice, once

with three decimal places, and then with one decimal place.

4. Write a script that will prompt the user for a number, and will print the square

of the user’s number in the following format:

Enter a number: 11.1
Your number squared is 123.21

5. Experiment, in the Command Window, with using the fprintf function for real

numbers. Make a note of what happens for each. Use fprintf to print the real

number 12345.6789

n without specifying any field width

n in a field width of 10 with four decimal places

n in a field width of 10 with two decimal places

n in a field width of 6 with four decimal places

n in a field width of 2 with four decimal places

6. Experiment, in the Command Window, with using the fprintf function for

integers. Make a note of what happens for each. Use fprintf to print the integer

12345

n without specifying any field width

n in a field width of 5

n in a field width of 8

n in a field width of 3

7. Whenwould you use disp instead of fprintf?Whenwould you use fprintf instead

of disp?

8. Explain exactly why these two sets of code (the one disp statement and the two

fprintf statements) produce the same output.

disp('And away we go!!')

fprintf('And ')
fprintf('away we go!!\n')

127Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

9. Write a script thatwill prompt the user for a character andwill print it twice; once

left-justified in a field width of 5, and again right-justified in a field width of 3.

10. A power company charges 6.6 cents per kilowatt hour (KWH) for providing

electricity. Write a script “power_charge” that will prompt the user for the

number of KWH used in a given month, and will print the charge for the month

in dollars, in the following format. (The conversion is 100 cents in one dollar.)

Here is an example of running the script.

>> power_charge
How many KWH this month: 200
Your charge for 200 KWH will be $13.20.

11. Why do we always suppress all assignment statements in scripts?

12. Write a script that assigns values for the x coordinate and then y coordinate of a

point, and then plots this using a green +.

13. Plot sin(x) for x values ranging from 0 to π (in separate Figure Windows):

n using 10 points in this range

n using 100 points in this range

Do this using a Live Script.

14. A data file “nums.dat” stores some numbers on one line. Write a script that will

read from this file, and plot only the positive numbers (>¼ 0), using black stars.

Put labels on the axes, and a title and subtitle on the plot.

15. Create a plot that uses both the xline and yline functions.

16. When would it be important to use legend in a plot?

17. Atmospheric properties such as temperature, air density, and air pressure are

important in aviation. Create a file that stores temperatures in degrees Kelvin

at various altitudes. The altitudes are in the first column and the temperatures

in the second. For example, it may look like this:

1000 288

2000 281

3000 269

18. Create a 3 � 6 matrix of random integers, each in the range from 50 to 100.

Write this to a file called randfile.dat. Then, create a new matrix of random

integers, but this time make it a 2 � 6 matrix of random integers, each in the

range from 50 to 100. Append this matrix to the original file. Then, read the file

in (which will be to a variable called randfile) just to make sure that worked!

19. Write a script that would create a 5�5 matrix of random integers. From this,

create another matrix variable which is the “middle” 3�3 part of the original

matrix. Write this new matrix to a file.

20. A part is being turned on a lathe. The diameter of the part is supposed to be

20,000 mm. The diameter is measured every 10 minutes and the results are

stored in a file called partdiam.dat. Create a data file to simulate this. The file

will store the time in minutes and the diameter at each time. Plot the data.

21. List some differences between a script and a function.

128 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

22. Write a function that converts inches to feet. Note that 12 inches ¼ 1 foot.

23. Write a fives function that will receive two arguments for the number of rows

and columns and will return a matrix with that size of all fives.

24. Write a function perim that receives the radius r of a circle, and calculates and

returns the perimeter P of the circle (P ¼ 2 Π r). Include a block comment.

25. Write a function isdivby4 that will receive an integer input argument, and will

return logical 1 for true if the input argument is divisible by 4, or logical false if

it is not.

26. A Pythagorean triple is a set of positive integers (a,b,c) such that a2 + b2 ¼ c2.

Write a function ispythag that will receive three positive integers (a, b, c in that

order) and will return logical 1 for true if they form a Pythagorean triple, or 0 for

false if not.

27. A function can return a vector as a result. Write a function vecout that will

receive one integer argument and will return a vector that increments from the

value of the input argument to its value plus 5, using the colon operator. For

example,

>> vecout(4)
ans =

4 5 6 7 8 9

28. The conversion depends on the temperature and other factors, but an

approximation is that 1 inch of rain is equivalent to 6.5 inches of snow. Write a

script that prompts the user for the number of inches of rain, calls a function to

return the equivalent amount of snow, and prints this result. Write the function,

as well. Do this two ways: in a separate code file, and as a local function.

29. A spherical sector is a part of a sphere, consisting of a spherical cap (which is a

part of the sphere created by putting a plane through the sphere), and the cone

that begins at the center of the sphere and extends to the base of the cap. The

volume V of a spherical sector is given by:

V¼ 2πr2h
3

where r is the radius of the sphere, and h is the height of the spherical cap.

Write a program that consists of a live script with a function.

The script:

n prompts the user for the values of the radius and the height

n calls a function to calculate the volume

n prints the volume in a nice sentence format with three decimal places

The function calculates the volume, given the radius and height. For simplicity,

ignore units.

30. Many mathematical models in engineering use the exponential function. The

general form of the exponential decay function is:

y tð Þ¼Ae�τt

129Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

where A is the initial value at t¼0, and τ is the time constant for the function.

Write a script to study the effect of the time constant. To simplify the equation,

set A equal to 1. Prompt the user for two different values for the time constant,

and for beginning and ending values for the range of a t vector. Then, calculate

two different y vectors using the above equation and the two-time constants,

and graph both exponential functions on the same graph within the range the

user specified. Use a local function to calculate y. Make one plot red. Be sure to

label the graph and both axes. What happens to the decay rate as the time

constant gets larger?

Data Science and Machine Learning

31. Write a script that will prompt the user for the results of a classification model

(the values of TP, TN, FP, and FN). Calculate and print the accuracy in a nice

sentence format. Recall that the accuracy is the sum of the correctly classified

(TP + TN) divided by the total number (sum of all).

32. Write a function that will receive a vector as an input argument, and will

normalize the vector and return the resulting normalized vector.

33. Examine the correlation between vectors 1:4 and 6:9, and then also between

the vectors 1:4 and 9:�1:6. Explain the correlation coefficients.

130 CHAPTER 3: Introduction to MATLAB Programming

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

CHAPTER 4

Selection Statements

KEY TERMS

selection statements

branching statements

condition

action

temporary variable

error-checking

throwing an error

nesting statements

cascading if-else

“is” functions

In the scripts and functions we have seen thus far, every statement was executed

in sequence. This is not always desirable, and in this chapter, we see how to

make choices as to whether statements are executed or not, and how to choose
between or among statements. The statements that accomplish this are called

selection or branching statements.

The MATLAB® software has two basic statements that allow us to make choices:

the if statement and the switch statement. The if statement has optional else

and elseif clauses for branching. The if statement uses expressions that are log-
ically true or false. These expressions use relational and logical operators.

MATLAB also has “is” functions that test whether an attribute is true or not;

these can be used with the selection statements.

4.1 THE IF STATEMENT

The if statement chooses whether another statement, or group of statements, is

executed or not. The general form of the if statement is:

if condition
action

end

A condition is a relational expression that is conceptually, or logically, true or

false. The action is a statement, or a group of statements, that will be executed if
the condition is true. When the if statement is executed, first the condition is

evaluated. If the value of the condition is true, the action will be executed; if

CONTENTS

4.1 The if
Statement ..131

4.2 The if-else
Statement ..135

4.3 Nested if-else
Statements .138

4.4 The Switch
Statement ..143

4.5 The “is”
Functions in
MATLAB146

Summary 151

Common
Pitfalls151

Programming Style
Guidelines152

MATLAB. https://doi.org/10.1016/B978-0-323-91750-6.00004-4

131

Copyright © 2023 Elsevier Inc. All rights reserved.

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

not, the action will not be executed. The action can be any number of state-

ments until the reserved word end; the action is naturally bracketed by the
reserved words if and end. (Note that this is different from the end that is used

as an index into a vector or matrix.) The action is usually indented to make it

easier to see.

For example, the following if statement checks to see whether the value of a
variable is negative. If it is, the value is changed to a zero; otherwise, nothing

is changed.

if num < 0
num = 0

end

If statements can be entered in the CommandWindow, although they generally

make more sense in scripts or functions. In the Command Window, the if line

would be entered, followed by the Enter key, the action, the Enter key, and
finally end and Enter. The results will follow immediately. For example, the pre-

ceding if statement is shown twice here.

>> num = –4;
>> if num < 0

num = 0
end

num =
0

>> num = 5;
>> if num < 0

num = 0
end

>>

The first time the value of the variable is negative so the action is executed and
the variable is modified, but, in the second case, the variable is positive so the

action is skipped.

This may be used, for example, tomake sure that the square root function is not

used on a negative number. The following script prompts the user for a number
and prints the square root. If the user enters a negative number the if statement

changes it to zero before taking the square root.

sqrtifexamp.m

% Prompt the user for a number and print its sqrt

num=input('Please enter a number: ');

% If the user entered a negative number, change it
if num<0

num = 0;
end
fprintf('The sqrt of %.1f is %.1f\n',num,sqrt(num))

Note

that the output from the

assignment is not sup-

pressed, so the result of

the action will be shown if

the action is executed.

132 CHAPTER 4: Selection Statements

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Here are two examples of running this script:

>> sqrtifexamp
Please enter a number: –4.2
The sqrt of 0.0 is 0.0

>> sqrtifexamp
Please enter a number: 1.44
The sqrt of 1.4 is 1.2

In this case, the action of the if statement was a single assignment statement.
The action can be any number of valid statements. For example, we may wish

to print a note to the user to say that the number entered was being changed.

Also, instead of changing it to zero we will use the absolute value of the negative
number entered by the user.

sqrtifexampii.m

% Prompt the user for a number and print its sqrt

num=input('Please enter a number: ');

% If the user entered a negative number, tell
% the user and change it
if num < 0

disp('OK, we' 'll use the absolute value')
num=abs(num);

end
fprintf('The sqrt of %.1f is %.1f\n',num,sqrt(num))

>> sqrtifexampii

Please enter a number: –25

OK, we'll use the absolute value

The sqrt of 25.0 is 5.0

PRACTICE 4.1

Write an if statement that would print “Hey, you get overtime!” if the value of a variable hours is

greater than 40. Test the if statement for values of hours less than, equal to, and greater than 40.

Will it be easier to do this in the Command Window or in a script?

Note

that in the script the out-

put from the assignment

statement is suppressed.

Note

that as seen in this

example, two single

quotes in the disp state-

ment are used to print

one single quote.

QUICK QUESTION!

Assume that we want to create a vector of increasing integer

values from mymin to mymax. We will write a function create-

vec that receives two input arguments,mymin andmymax, and

returns a vector with values from mymin to mymax in steps of

one. First, we would make sure that the value ofmymin is less

than the value of mymax. If not, we would need to exchange

their values before creating the vector. How would we

accomplish this?

Answer: To exchange values, a third variable, a temporary

variable, is required. For example, let us say that we have

two variables, a and b, storing the values:

Continued

1334.1 The if Statement

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

4.1.1 Representing Logical True and False

It has been stated that conceptually true expressions have the logical value of

1, and expressions that are conceptually false have the logical value of 0.

QUICK QUESTION!—CONT’D

a=3;

b=5;

To exchange values, we could not just assign the value of b to

a, as follows:

a=b;

If that were done, then the value of a (the 3), is lost! Instead, we

need to assign the value of a first to a temporary variable so

that the value is not lost. The algorithm would be:

n assign the value of a to temp

n assign the value of b to a

n assign the value of temp to b

>> temp=a;

>> a=b

a =

5

>> b=temp

b =

3

Now, for the function. An if statement is used to determine

whether or not the exchange is necessary.

createvec.m

Examples of calling the function are:

>> createvec(4,6)

ans =

4 5 6

>> createvec(7,3)

ans =

3 4 5 6 7

function outvec=createvec(mymin, mymax)
% createvec creates a vector that iterates from a
% specified minimum to a maximum
% Format of call: createvec(minimum, maximum)
% Returns a vector

% If the "minimum" isn't smaller than the "maximum",
% exchange the values using a temporary variable
if mymin > mymax

temp=mymin;
mymin=mymax;
mymax=temp;

end

% Use the colon operator to create the vector
outvec=mymin:mymax;
end

134 CHAPTER 4: Selection Statements

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Representing the concepts of logical true and false in MATLAB is slightly

different: the concept of false is represented by the value of 0, but the
concept of true can be represented by any nonzero value (not just 1). This

can lead to some strange logical expressions. Consider the following if

statement:

>> if 5
disp('Yes, this is true!')

end
Yes, this is true!

As 5 is a nonzero value, the condition is true. Therefore, when this logical

expression is evaluated, it will be true, so the disp function will be executed

and “Yes, this is true” is displayed. Of course, this is a pretty bizarre if statement,
one that hopefully would never be encountered!

However, a simple mistake in an expression can lead to a similar result. For

example, let us say that the user is prompted for a choice of ‘Y’ or ‘N’ for a
yes/no question.

letter=input('Choice (Y/N): ','s');

In a script we might want to execute a particular action if the user responded

with ‘Y’. Most scripts would allow the user to enter either lowercase or upper-

case; for example, either ‘y’ or ‘Y’ to indicate “yes”. The proper expression that
would return true if the value of letter was ‘y’ or ‘Y’ would be

letter == 'y' jj letter == 'Y'

However, if by mistake this was written as:

letter == 'y' jj 'Y' %Note: incorrect!!

this expression would ALWAYS be true, regardless of the value of the variable

letter. This is because 'Y' is a nonzero value, so it is a true expression. The first part
of the expression, on the left side of the or operator, may be false, but as the

second expression (on the right side of the or operator; the ‘Y’) is true the entire

expression would be true, regardless of the value of the variable letter.

4.2 THE IF-ELSE STATEMENT

The if statement chooses whether or not an action is executed. Choosing

between two actions, or choosing from among several actions, is accomplished

using if-else, nested if-else, and switch statements.

The if-else statement is used to choose between two statements, or sets of state-
ments. The general form is:

if condition
action1

else
action2

end

Note

wemight also want to use

letter(1) in case the user

entered the entire word

‘yes’ or ‘no’.

1354.2 The if-else Statement

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

First, the condition is evaluated. If it is true, then the set of statements desig-

nated as “action1” is executed, and that is the end of the if-else statement.
If, instead, the condition is false, the second set of statements designated as

“action2” is executed, and that is the end of the if-else statement. The first

set of statements (“action1”) is called the action of the if clause; it is what will
be executed if the expression is true. The second set of statements (“action2”) is

called the action of the else clause; it is what will be executed if the expression is

false. One of these actions, and only one, will be executed; which one depends
on the value of the condition.

For example, to determine and print whether a random number in the range

from 0 to 1 is less than 0.5, an if-else statement could be used:

if rand<0.5
disp('It was less than .5!')

else
disp('It was not less than .5!')

end

PRACTICE 4.2

Write a script printsindegorrad that will:

n prompt the user for an angle

n prompt the user for (r)adians or (d)egrees, with radians as the default

n if the user enters ‘d’, the sind function will be used to get the sine of the angle in degrees;

otherwise, the sin function will be used. Which sine function to use will be based solely on

whether the user entered a ‘d’ or not (‘d’ means degrees, so sind is used; otherwise, for

any other character the default of radians is assumed so sin is used)

n print the result

Here are examples of running the script:

>> printsindegorrad

Enter the angle: 45

(r)adians (the default) or (d)egrees: d

The sin is 0.71

>> printsindegorrad

Enter the angle: pi

(r)adians (the default) or (d)egrees: r

The sin is 0.00

One application of an if-else statement is to check for errors in the inputs to a

script (this is called error-checking). For example, an earlier script prompted the
user for a radius, and then used that to calculate the area of a circle. However, it

did not check to make sure that the radius was valid (e.g., a positive number).

Here is a modified script that checks the radius:

136 CHAPTER 4: Selection Statements

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

checkradius.m

% This script calculates the area of a circle
% It error-checks the user's radius
radius=input('Please enter the radius: ');
if radius <= 0

fprintf('Sorry; %.2f is not a valid radius\n',radius)
else

area=calcarea(radius);
fprintf('For a circle with a radius of %.2f,',radius)
fprintf(' the area is %.2f\n',area)

end

Examples of running this script when the user enters invalid and then valid radii

are shown as follows:

>> checkradius
Please enter the radius: –4
Sorry; –4.00 is not a valid radius

>> checkradius
Please enter the radius: 5.5
For a circle with a radius of 5.50, the area is 95.03

The if-else statement in this example chooses between two actions: printing an
error message, or using the radius to calculate the area and then printing out the

result. Note that the action of the if clause is a single statement, whereas the

action of the else clause is a group of three statements.

MATLAB also has an error function that can be used to display an error
message; the terminology is that this is throwing an error. In the previous

script, the if clause could be modified to use the error function rather than

fprintf; the result will be displayed in red as with the error messages
generated by MATLAB. Also, very importantly, when an error message is

thrown, the script stops executing. This is illustrated by the following mod-

ified script:

checkraderror.m

radius=input('Please enter the radius: ');
if radius <=0

error('Sorry; %.2f is not a valid radius\n',radius)
else

area=pi * radius .^ 2;
fprintf('For a circle with a radius of %.2f,',radius)
fprintf(' the area is %.2f\n',area)

end
disp("And that is it!")

1374.2 The if-else Statement

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> checkraderror
Please enter the radius: –5
Error using checkraderror (line 3)
Sorry; –5.00 is not a valid radius

>> checkraderror
Please enter the radius: 4.5
For a circle with a radius of 4.50, the area is 63.62
And that is it!

If the entered radius is not valid, an error message is thrown and nothing
else is executed. However, if the radius is valid, it is used to calculate and

print the error; also, the disp statement is executed after the if-else

statement ends.

4.3 NESTED IF-ELSE STATEMENTS

The if-else statement is used to choose between two actions. To choose from

more than two actions, the if-else statements can be nested, meaning one state-

ment inside of another. For example, consider implementing the following
continuous mathematical function y ¼ f(x):

y = 1 if x<–1
y = x2 if –1 � x � 2
y = 4 if x>2

The value of y is based on the value of x, which could be in one of three possible
ranges. Choosing which range could be accomplished with three separate if

statements as follows:

if x<–1
y=1;

end
if x>=–1 && x <=2

y=x^2;
end
if x>2

y=4;
end

Note that the && in the expression of the second if statement is necessary.
Writing the expression as �1< ¼ x< ¼ 2 would be incorrect; recall from

Chapter 1 that that expression would always be true, regardless of the value

of the variable x.

As the three possibilities are mutually exclusive, the value of y can be deter-
mined by using three separate if statements. However, this is not very efficient

code: all three logical expressions must be evaluated, regardless of the range in

138 CHAPTER 4: Selection Statements

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

which x falls. For example, if x is less than �1, the first expression is true and 1

would be assigned to y. However, the two expressions in the next two if state-
ments are still evaluated. Instead of writing it this way, the statements can be

nested so that the entire if-else statement ends when an expression is found

to be true:

if x<–1
y=1;

else
% If we are here, x must be >=–1
% Use an if-else statement to choose
% between the two remaining ranges
if x<=2

y=x^2;
else

% No need to check
% If we are here, x must be >2
y=4;

end
end

By using a nested if-else to choose from among the three possibilities, not all

conditions must be tested as they were in the previous example. In this case, if
x is less than �1, the statement to assign 1 to y is executed, and the if-else state-

ment is completed sonoother conditions are tested. If, however, x is not less than

�1, then the else clause is executed. If the else clause is executed, thenwe already
know that x is greater than or equal to�1 so that part does not need to be tested.

Instead, there are only two remaining possibilities: either x is less than or equal
to 2, or it is greater than 2. An if-else statement is used to choose between those

two possibilities. So, the action of the else clause was another if-else statement.

Although it is long, all of the above code is one if-else statement, a nested if-else
statement. The actions are indented to show the structure of the statement.

Nesting if-else statements in this way can be used to choose from among 3,

4, 5, 6, ... the possibilities are practically endless!

This is actually an example of a particular kind of nested if-else called a cascad-

ing if-else statement. This is a type of nested if-else statement in which the con-

ditions and actions cascade in a stair-like pattern.

Not all nested if-else statements are cascading. For example, consider the fol-

lowing (which assumes that a variable x has been initialized):

if x >= 0
if x < 4

disp('a')
else

disp('b')
end

else
disp('c')

end

1394.3 Nested if-else Statements

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

4.3.1 The elseif Clause

To choose from amongmore than two actions, the elseif clause can be used. For
example, if there are n choices (where n > 3 in this example), the following

general form would be used:

if condition1
action1

elseif condition2
action2

elseif condition3
action3

% etc: there can be many of these
else

actionn % the nth action
end

The actions of the if, elseif, and else clauses are naturally bracketed by the

reserved words if, elseif, else, and end.

For example, a previous example could be written using the elseif clause, rather
than nesting if-else statements:

This could be implemented in a function that receives a value of x and returns

the corresponding value of y:

calcy.m

function y=calcy(x)
% calcy calculates y as a function of x
% Format of call: calcy(x)
% y = 1 if x<–1
% y = x^2 if –1 <=x<=2
% y = 4 if x>2

if x < –1
y = 1;

elseif x<=2
y=x^2;

else
y=4;

end
end

>> x=1.1;
>> y=calcy(x)
y =

1.2100

Therefore, there are three ways of accomplishing the original task: using three
separate if statements, using nested if-else statements, and using an if statement

with elseif clauses, which are the simplest.

Note

that in this example we

only need one end for the

nested if-else.

140 CHAPTER 4: Selection Statements

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PRACTICE 4.3

Modify the function findargtype to return either ‘scalar’, ‘row vector’, ‘column vector’, or ‘matrix’,

depending on the input argument.

PRACTICE 4.4

Modify the original function findargtype to use three separate if statements instead of a nested

if-else statement.

Another example demonstrates choosing from more than just a few options.

The following function receives an integer quiz grade, which should be in

QUICK QUESTION!

How could you write a function to determine whether an input

argument is a scalar, a vector, or a matrix?

Answer: To do this, the size function can be used to find the

dimensions of the input argument. If both the number of rows

and columns is equal to 1, then the input argument is a scalar. If,

however, only one dimension is 1, the input argument is a vector

(either a row or column vector). If neither dimension is 1, the input

argument is a matrix. These three options can be tested using a

nested if-elsestatement. In thisexample, theword ‘scalar’, ‘vector’

or ‘matrix’ is returned from the function.

findargtype.m

function outtype=findargtype(inputarg)
% findargtype determines whether the input
% argument is a scalar, vector, or matrix
%

Format of call: findargtype(inputArgument)
% Returns a character vector

[r c] = size(inputarg);
if r == 1 && c == 1

outtype= 'scalar';
elseif r == 1 jj c == 1

outtype= 'vector';
else

outtype= 'matrix';
end
end

Note that there is no need to check for the last case: if the input

argument is not a scalar or a vector, it must be a matrix!

Examples of calling this function are:

>> findargtype(33)

ans =

'scalar'

>> disp(findargtype(2:5))

vector

>> findargtype(zeros(2,3))

ans =

'matrix'

1414.3 Nested if-else Statements

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

the range from 0 to 10. The function then returns a corresponding letter grade,

according to the following scheme: a 9 or 10 is an ‘A’, an 8 is a ‘B’, a 7 is a ‘C’, a 6
is a ‘D’, and anything below that is an ‘F’. As the possibilities are mutually exclu-

sive, we could implement the grading scheme using separate if statements.

However, it is more efficient to have one if-else statement with multiple elseif
clauses. Also, the function returns the letter ‘X’ if the quiz grade is not valid. The

function assumes that the input is an integer.

letgrade.m

function grade=letgrade(quiz)
% letgrade returns the letter grade corresponding
% to the integer quiz grade argument
% Format of call: letgrade(integerQuiz)
% Returns a character

% First, error-check
if quiz<0 jj quiz >10

grade= 'X';

% If here, it is valid so figure out the
% corresponding letter grade
elseif quiz == 9 jj quiz == 10

grade= 'A';
elseif quiz == 8

grade= 'B';
elseif quiz == 7

grade= 'C';
elseif quiz == 6

grade= 'D';
else

grade= 'F';
end
end

Three examples of calling this function are:

>> quiz=8;
>> lettergrade=letgrade(quiz)
lettergrade =

'B'
>> quiz=4;
>> letgrade(quiz)
ans =

'F'

>> lg=letgrade(22)
lg =

'X'

In the part of this if statement that chooses the appropriate letter grade to
return, all of the logical expressions are testing the value of the variable quiz

to see if it is equal to several possible values, in sequence (first 9 or 10, then

8, then 7, etc.). This part can be replaced by a switch statement.

142 CHAPTER 4: Selection Statements

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

4.4 THE SWITCH STATEMENT

A switch statement can often be used in place of a nested if-else or an if state-

ment with many elseif clauses. Switch statements are used when an expression
is tested to see whether it is equal to one of several possible values.

The general form of the switch statement is:

switch switch_expression
case caseexp1

action1
case caseexp2

action2
case caseexp3

action3
% etc: there can be many of these
otherwise

actionother
end

The switch statement starts with the reserved word switch and ends with the
reserved word end. The switch_expression is compared, in sequence, to the case

expressions (caseexp1, caseexp2, etc.). If the value of the switch_expression

matches caseexp1, for example, then action1 is executed and the switch state-
ment ends. If the value matches caseexp3, then action3 is executed, and in gen-

eral if the value matches caseexpi where i can be any integer from 1 to n, then

actioni is executed. If the value of the switch_expression does notmatch any of the
case expressions, the action after the word otherwise is executed (actionother) if

there is an otherwise (if not, no action is executed). It is not necessary to have

an otherwise clause, although it is frequently useful. The switch_expressionmust
be either a scalar or a character vector.

For the previous example, the switch statement can be used as follows:

switchletgrade.m

function grade=switchletgrade(quiz)
% switchletgrade returns the letter grade corresponding
% to the integer quiz grade argument using switch
% Format of call: switchletgrade(integerQuiz)
% Returns a character

% First, error-check
if quiz<0 jj quiz >10

grade= 'X';
else

% If here, it is valid so figure out the
% corresponding letter grade using a switch
switch quiz

case 10
grade= 'A';

case 9
grade= 'A';

case 8
grade= 'B';

1434.4 The Switch Statement

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

case 7
grade= 'C';

case 6
grade= 'D';

otherwise
grade= 'F';

end
end
end

Here are two examples of calling this function:

>> quiz=22;
>> lg=switchletgrade(quiz)
lg =

'X'

>> switchletgrade(9)
ans =

'A'

As the same action of printing ‘A’ is desired for more than one grade, these can

be combined as follows:

switch quiz
case {10,9}

grade= 'A';
case 8

grade= 'B';
% etc.

The curly braces around the case expressions 10 and 9 are necessary.

In this example, we error-checked first using an if-else statement. Then, if the

grade was in the valid range, a switch statement was used to find the corre-
sponding letter grade.

Sometimes the otherwise clause is used for the error message rather than first

using an if-else statement. For example, if the user is supposed to enter only a 1,

3, or 5, the script might be organized as follows:

switcherror.m

% Example of otherwise for error message

choice=input('Enter a 1, 3, or 5: ');

switch choice
case 1

disp('It' 's a one!!')
case 3

disp('It' 's a three!!')
case 5

disp('It' 's a five!!')
otherwise

disp('Follow directions next time!!')
end

Note

that it is assumed that the

user will enter an integer

value. If the user does

not, either an error mes-

sage will be printed or an

incorrect result will be

returned. Methods for

remedying this will be

discussed in Chapter 5.

Note

that the order of the case

expressions does not

matter, except that this is

the order in which they

will be evaluated.

144 CHAPTER 4: Selection Statements

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

In this example, actions are taken if the user correctly enters one of the valid

options. If the user does not, the otherwise clause handles printing an error
message. Note the use of two single quotes within the string to print one quote.

>> switcherror
Enter a 1, 3, or 5: 4
Follow directions next time!!

MATLAB has a built-in function calledmenu that will display a Figure Window

with pushbuttons for the options. The first string passed to themenu function
is the heading (an instruction), and the rest are labels that appear on the push-

buttons. The function returns the number of the button that is pushed. For

example,

>> mypick=menu('Pick a pizza','Cheese','Shroom','Sausage');

will display the Figure Window seen in Fig. 4.1 and store the result of the user’s
button push in the variable mypick.

There are three buttons, the equivalent values of which are 1, 2, and 3. For exam-

ple, if the user pushes the “Sausage” button, mypick would have the value 3:

>> mypick
mypick =

3

Note that the strings ‘Cheese’, ‘Shroom’, and ‘Sausage’ are just labels on the but-

tons. The actual value of the button push in this example would be 1, 2, or 3, so
that is what would be stored in the variable mypick.

A script that uses thismenu function would then use either an if-else statement

or a switch statement to take an appropriate action based on the button

pushed. For example, the following script simply prints which pizza to order,
using a switch statement.

FIGURE 4.1

Menu Figure Window.

1454.4 The Switch Statement

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

pickpizza.m

%This script asks the user for a type of pizza
% and prints which type to order using a switch

mypick=menu('Pick a pizza','Cheese','Shroom','Sausage');
switch mypick

case 1
disp('Order a cheese pizza')

case 2
disp('Order a mushroom pizza')

case 3
disp('Order a sausage pizza')

otherwise
disp('No pizza for us today')

end

This is an example of running this script and clicking on the “Sausage” button:

>> pickpizza
Order a sausage pizza

PRACTICE 4.5

Write a function that will receive one number as an input argument. It will use themenu function

to display ‘Choose a function’ and will have buttons labeled ‘fix’, ‘floor’, and ‘abs’. Using a switch

statement, the function will then calculate and return the requested function (e.g., if ‘abs’ is cho-

sen, the function will return the absolute value of the input argument). Choose a fourth function to

return if the user clicks on the red ‘X’ instead of pushing a button.

The menu function is no longer recommended. An alternative, which is not

quite as simple, is the listdlg function.

4.5 THE “IS” FUNCTIONS IN MATLAB

There are a lot of functions that are built into MATLAB that test whether some-

thing is true; these functions have names that begin with the word “is”. For

QUICK QUESTION!

How could the otherwise action get executed in this switch

statement?

Answer: If the user clicks on the red “X” on the top of the

menu box to close it instead of on one of the three buttons,

the value returned from themenu functionwill be 0, whichwill

cause the otherwise clause to be executed. This could also

have been accomplished using a case 0 label instead of

otherwise.

Instead of using a switch statement in this script, an alterna-

tive method would be to use an if-else statement with elseif

clauses.

146 CHAPTER 4: Selection Statements

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

example, we have already seen the use of the isequal function to compare arrays

for equality. As another example, the function called isletter returns logical 1 if
the character argument is a letter of the alphabet, or 0 if it is not:

>> isletter('h')
ans =

1
>> isletter('4')
ans =

0

The isletter function will return logical true or false so that it can be used in a

condition in an if statement. For example, here is code that would prompt the

user for a character, and then print whether it is a letter:

mychar=input('Please enter a char: ','s');
if isletter(mychar)

disp('Is a letter')
else

disp('Not a letter')
end

When used in an if statement, it is not necessary to test the value to see whether

the result from isletter is equal to 1 or 0; this is redundant. In other words, in

the condition of the if statement,

isletter(mychar)

and

isletter(mychar) == 1

would produce the same results.

QUICK QUESTION!

How can we write our own function myisletter to accomplish

the same result as isletter?

Answer: The function would compare the character’s posi-

tion within the character encoding.

myisletter.m

function outlog=myisletter(inchar)
% myisletter returns true if the input argument
% is a letter of the alphabet or false if not
% Format of call: myisletter(inputCharacter)
% Returns logical 1 or 0

outlog=inchar >= 'a' && inchar <= 'z' ...
jj inchar >= 'A' && inchar <= 'Z';

end

Note that it is necessary to check for both lowercase and uppercase letters.

1474.5 The “is” Functions in MATLAB

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Another useful “is” function is isnumeric.

>> isnumeric(4.5)
ans =

1
>> isnumeric(5:7)
ans =

1

The function isempty returns logical true if a variable is empty, logical false if it

has a value, or an errormessage if the variable does not exist. Therefore, it can be

used to determine whether a variable has a value yet or not. For example,

>> clear
>> isempty(evec)
Unrecognized function or variable 'evec'.

>> evec=[];
>> isempty(evec)
ans =

1

>> evec=[evec 5];
>> isempty(evec)
ans =

0

The isempty function will also determine whether or not a string or character

vector variable is empty. This can be used to determine whether the user entered

a character vector in an input function. In the following example, when
prompted the user simply hit the Return key.

>> cv=input('Please enter a char vec: ','s');
Please enter a char vec:
>> isempty(cv)
ans =

1

PRACTICE 4.6

Prompt the user for a character vector, and then print either the character vector that the user

entered or an error message if the user did not enter anything.

The isa function can be used to determine whether the first argument is a par-
ticular type.

>> num = 11;
>> isa(num, 'int16')
ans =

0
>> isa(num,'double')
ans =

1

148 CHAPTER 4: Selection Statements

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The function iskeyword will determine whether or not a character vector or

string is the name of a keyword in MATLAB, and therefore something that can-
not be used as an identifier name. By itself (with no arguments), it will return

the list of all keywords.

>> iskeyword('sin')
ans =

0
>> iskeyword('switch')
ans =

1

>> iskeyword
ans =

'break'
'case'
'catch'

% etc.

There are many other “is” functions; the complete list can be found in the

Documentation.

Data Science and Machine Learning Supplement
Working with NaN Values
As we have seen in Chapter 2, when reading data into MATLAB, missing values

are often replaced by the constant NaN. Usually, there would not be verymany,

but a data setmight look like the following, where NaN representsmissing data:

>> dataset=[5 NaN 9 3 11 NaN];

Before working with such a data set, it is useful to clean the data by replacing the
NaN values with something else, frequently the mean, median, or mode of the

rest of the data. So, it is necessary to determine where the NaN values are. The
equality operator does not work with NaN, e.g.:

>> dataset == NaN
ans =

1*6 logical array
0 0 0 0 0 0

However, there is an “is” function, isnan, that returns 1 for true for every ele-

ment that stores NaN, and 0 for false for all other elements.

>> wherenan=isnan(dataset)
wherenan =

1*6 logical array
0 1 0 0 0 1

Using logical indexing, we could then replace the NaN values in the vector with,

for example, the mean of the non-NaN values:

Note

that the names of func-

tions like “sin” are not

keywords, so their values

can be overwritten if used

as an identifier name.

1494.5 The “is” Functions in MATLAB

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> restmean=mean(dataset, 'omitnan')
restmean =

7
>> dataset(wherenan)=restmean
dataset =

5 7 9 3 11 7

Binning/Bucketing
Binning, or bucketing, involves taking real numbers and lumping them together

into what are called bins, or buckets, or categories. For example, data used to
evaluate housing markets might store information on the size of the kitchen

in square feet. However, for the analysis it may not be necessary to know the
exact size in square feet. It may be sufficient to just categorize each kitchen

as “small”, “medium”, or “large”. For this example, we will assume that a small

kitchen is 100 square feet or less, a medium-sized kitchen is in the range from
100 to 300 square feet, and anything larger than that is a large kitchen. To illus-

trate this, we will create a variable that stores a kitchen size, and then use a

nested if-else statement to put it in the correct category.

kitchensize=randi([50, 600]);
if kitchensize <=100

kitchenbin="small";
elseif kitchensize >100 && kitchensize <=300

kitchenbin="medium";
else

kitchenbin="large";
end
fprintf('A kitchen with size %.1f is %s\n', ...

kitchensize, kitchenbin)

Decision Trees
A decision tree is a particular type of ML algorithm that is generally used for clas-

sification problems. The decision tree is basically a set of questions for which

there are only twopossible answers. The questions are callednodes. The very first
question that starts everything off is called the root node. Each node splits the tree

into two branches (also called edges). A node that does not have any splits com-

ing out of it is called a terminal node, or end node, or leaf node. Because eachnode
splits into two branches, these splits are accomplished using if-else statements.

A diagram depicting a decision tree can be seen in Fig. 15.1.

n Explore Other Interesting Features

There are many other “is” functions. As more concepts are covered in the

book, more and more of these functions will be introduced. Others you

may want to explore now include isvarname, and functions that will tell
you whether an argument is a particular type or not (ischar, isfloat,

isinteger, islogical, isstr, isreal).

There are “is” functions to determine the type of an array: isvector, isrow,

iscolumn, ismatrix.

150 CHAPTER 4: Selection Statements

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The try/catch functions are a particular type of if-else used to find and
avoid potential errors. They may be a bit complicated to understand at this

point, but keep them in mind for the future! n

SUMMARY

COMMON PITFALLS

n Using ¼ instead of == for equality in conditions

n Putting a space in the keyword elseif

n Not using quotes when comparing a string variable to a string, such as
letter == y

instead of
letter == 'y'

n Not spelling out an entire logical expression. An example is typing

radius jj height <=0

instead of

radius <=0 jj height <=0

or typing

letter == 'y' jj 'Y'

instead of

letter == 'y' jj letter == 'Y'

Note that these are logically incorrect but would not result in error mes-
sages. Note also that the expression “letter == 'y' jj 'Y'” will ALWAYS be

true, regardless of the value of the variable letter, as 'Y' is a nonzero value

and therefore a true expression.
n Not correctly checking for a range of values (e.g., using 1 < x < 5 instead

of using 1 < x && x < 5)

n Writing conditions that are more complicated than necessary, such as

if (x<5) == 1

instead of just

if (x<5)

(The “¼¼1” is redundant.)

n Using an if statement instead of an if-else statement for error-checking;
for example,

% Wrong method
if error occurs

print error message
end

continue rest of code

151Common Pitfalls

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

instead of

% Correct method
if error occurs

print error message
else

continue rest of code
end

In the first example, the error message would be printed but then the pro-

gram would continue anyway. Of course, if you throw an error message

instead of printing, it would not matter.

PROGRAMMING STYLE GUIDELINES

n Use indentation to show the structure of a script or function. In particular,

the actions in an if statement should be indented.
n When the else clause is not needed, use an if statement rather than an if-

else statement. The following is an example:

if unit == 'i'
len=len * 2.54;

else
len=len; % this does nothing so skip it!

end

n Instead, just use:

if unit == 'i'
len=len * 2.54;

end

n Do not put unnecessary conditions on else or elseif clauses. For example,

the following prints one thing if the value of a variable number is equal to

5, and something else if it is not.

if number == 5
disp('It is a 5')

elseif number �= 5
disp('It is not a 5')

end

The second condition, however, is not necessary. Either the value is 5 or

not, so just the else would handle this:

if number == 5
disp('It is a 5')

else
disp('It is not a 5')

end

152 CHAPTER 4: Selection Statements

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

MATLAB Reserved Words

if
switch

else
elseif

case
otherwise

MATLAB Functions and Commands

error
menu
listdlg

isletter
isnumeric
isempty

isa
iskeyword

Exercises

1. Write a script that tests whether the user can follow instructions. It prompts the

user to enter an ‘x’. If the user enters anything other than an ‘x’, it prints an

error message – otherwise, the script does nothing.

2. Write a function nexthour that receives one integer argument, which is an hour

of the day, and returns the next hour. This assumes a 12-hour clock; so, for

example, the next hour after 12 would be 1. Here are two examples of calling

this function.

>> fprintf('The next hour will be %d.\n',nexthour(3))
The next hour will be 4.
>> fprintf('The next hour will be %d.\n',nexthour(12))
The next hour will be 1.

3. Write a script that will begin by asking the user’s name. Then, it asks the user to

enter a number, and then a smaller number. If the user follows directions, and

enters a smaller number, the script prints the difference between the larger

and smaller numbers. If, however, the user does not follow directions, the

script tells the user that (using the user’s name). Youmay assume that the user

enters numbers both times.
4. When would you use just an if statement and not an if-else?

5. Write a statement that will store logical true in a variable named isit if the value

of a variable x is in the range from 0 to 10, or logical false if not. Do this with just

one assignment statement, with no if or if-else statement!

6. For planes, the taper ratio is the wing tip length divided by the wing root length

(e.g., 66”/200”). Write a script that will:

n prompt the user for the wing tip length and the wing root length

n call a function to calculate and return the taper ratio

n print the taper ratio

However, the script should print an error message if either input value is not a

positive number. So, the script will either print an error message, or it will

153Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

calculate and print the taper ratio (since it does notmake sense to calculate the

taper ratio using invalid input(s)). Also write the function that calculates and

returns the taper ratio. Write the entire program, using separate code files for

the script and the function.

7. A data file “parttolerance.dat” stores, on one line, a part number, and the

minimum and maximum values for the valid range that the part could weigh.

Write a script “parttol” that will read these values from the file, prompt the user

for a weight, and print whether or not that weight is within range. Create a

sample data file; for example, the file might store the following:

>> type parttolerance.dat
123 44.205 44.287

8. Writea livescript thatwillprompt theuser foracharacter. Itwill createanx-vector

that has 50 numbers, equally spaced between -2π and 2π, and then a y-vector

which is cos(x). If the user entered the character ‘r’, it will plot these vectors with

red *s – otherwise, for any other character it will plot the points with green +s.
9. Simplify this statement:

if number >100
number=100;

else
number=number;

end

10. Explain why the “if val< 4” in the line “elseif val< 4” is not necessary, and show

how this statement could be simplified:

if val>=4
disp('ok')

elseif val<4
disp('smaller')

end

11. Explain why the following code always prints “In middle”, regardless of what

the user enters (although you may assume that the user enters an integer).

Then,modify the if statement so that it will print “Inmiddle” if the user’s integer

is in the range from 0 to 50, or “Out of range” if not.

val=input('Enter an integer: ');
if 0<val<50

disp('In middle')
else

disp('Out of range')
end

12. Write a function myabs that calculates and returns the absolute value of the

input argument (without using the abs function). Do this using an if-else

statement.

13. Rewrite the myabs function from Problem 12, this time using an if statement

(not an if-else).

14. Given the following function:

154 CHAPTER 4: Selection Statements

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

divit.m

function myout=divit(myin)

myout=1/myin;

end

Write a script divornot that will prompt the user for a number (assume the user

does enter a number). The script will then print “cannot call function” if the

user enters a 0, or it will pass the user’s number to the function and print the

result.
15. Modify your script for Problem 14 to throw an error if the user enters a 0.

16. In chemistry, the pH of an aqueous solution is a measure of its acidity. The pH

scale ranges from 0 to 14, inclusive. A solution with a pH of 7 is said to be

neutral, a solution with a pH greater than 7 is basic, and a solution with a pH less

than 7 is acidic. Write a script that will prompt the user for the pH of a solution,

and will print whether it is neutral, basic, or acidic. If the user enters an invalid

pH, an error message will be printed.

17. In a script, the user is supposed to enter either a ‘y’ or ‘n’ in response to a

prompt. The user’s input is read into a character variable called letter. The

script will print “OK, continuing” if the user enters either a ‘y’ or ‘Y’ or it will print

“OK, halting” if the user enters a ‘n’ or ‘N’ or “Error” if the user enters anything

else. Write the script using a single nested if-else statement (elseif clause is

permitted).

18. Write the script from the previous exercise using a switch statement

instead.

19. In aerodynamics, the Mach number is a critical quantity. It is defined as the

ratio of the speed of an object (e.g., an aircraft) to the speed of sound. If the

Mach number is less than 1, the flow is subsonic; if the Mach number is equal

to 1, the flow is transonic; and if the Mach number is greater than 1, the flow is

supersonic. Write a script that will prompt the user for the speed of an aircraft

and the speed of sound at the aircraft’s current altitude and will print whether

the condition is subsonic, transonic, or supersonic.

20. Write a script that will generate one random integer, and will print whether

the random integer is an even or an odd number. (Hint: an even number is

divisible by 2, whereas an odd number is not; so check the remainder after

dividing by 2.)

21. The Beaufort Wind Scale is used to characterize the strength of winds. The

scale uses integer values and goes from a force of 0, which is no wind, up to 12,

which is a hurricane. The following script first generates a random force value.

Then, it prints a message regarding what type of wind that force represents,

using a switch statement. You are to re-write this switch statement as one

nested if-else statement that accomplishes exactly the same thing. You may

use else and/or elseif clauses.

22. Write a script areaMenu that will print a list consisting of “cylinder”, “circle”,

and “rectangle”. It prompts the user to choose one, and then prompts the

155Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

user for the appropriate quantities (e.g., the radius of the circle) and then

prints its area. If the user enters an invalid choice, the script simply prints an

error message. The script should use a nested if-else statement to

accomplish this.

23. Modify the areaMenu script to use a switch statement to decide which area to

calculate.

24. Modify the areaMenu script to use the menu function instead of printing

a menu.

25. Write a script that will prompt the user for a character vector and then print

whether it was empty or not.

26. Simplify this statement:

if iskeyword('else') == 1
disp('Cannot use as a variable name')

end

27. Write a script to test the isnumeric function.
28. Store a value in a variable and then use isa to test to see whether or not it is the

type double.

29. Write a function called “makemat” that will receive two row vectors as input

arguments, and from them create and return a matrix with two rows. You may

not assume that the length of the vectors is known. Also, the vectors may be of

different lengths. If that is the case, add 0’s to the end of one vector first tomake

it as long as the other. For example, a call to the function might be:

>>makemat(1:4, 2:7)
ans =

1 2 3 4 0 0

2 3 4 5 6 7

Data Science and Machine Learning

30. Create a matrix that contains some NaN values, for example:

mat =
14 NaN 13 15
3 7 NaN 13

Write code that will replace the NaN constants with the median of the rest of

the numbers in the matrix, for example:

mat =
14 13 13 15
3 7 13 13

Be careful about this! Note that the median of the non-NaN values is

13 because the median of the sorted vector storing the numbers from the

matrix, [3 7 13 13 14 15], is 13.

31. True or False: the equality operator can be used to determine whether

elements in a vector store the constant NaN, or not.

156 CHAPTER 4: Selection Statements

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

CHAPTER 5

Loop Statements and Vectorizing Code

KEY TERMS

looping statements

counted loops

conditional loops

action

vectorized code

iterate

loop or iterator variable

echo printing

running sum

running product

preallocate

nested loop

outer loop

inner loop

infinite loop

factorial

counting

error-checking

efficient code

Consider the problem of calculating the area of a circle with a radius of 0.3 cm.

A MATLAB® program certainly is not needed to do that; you would use your

calculator instead, and punch in π*0.3 2. However, if a table of circle areas
is desired, for radii ranging from 0.1 cm to 100 cm in steps of 0.05 (e.g., 0.1,

0.15, 0.2, etc.), it would be very tedious to use a calculator and write it all down.

One of the great uses of programming languages and software packages such as
MATLAB is the ability to repeat a process such as this.

This chapter will cover statements in MATLAB that allow other statement(s) to
be repeated. The statements that do this are called looping statements, or loops.

There are two basic kinds of loops in programming: counted loops and condi-

tional loops. A counted loop is a loop that repeats statements a specified number
of times (so, ahead of time it is known howmany times the statements are to be

repeated). In a counted loop, for example, you might say “repeat these state-

ments 10 times”. A conditional loop also repeats statements, but ahead of time
it is not known how many times the statements will need to be repeated. With a

conditional loop, for example, youmight say “repeat these statements until this

condition becomes false”. The statement(s) that are repeated in any loop are
called the action of the loop.

There are two different loop statements in MATLAB: the for statement and the
while statement. In practice, the for statement is used as the counted loop, and

CONTENTS

5.1 The for
Loop158

5.2 Nested for
Loops 165

5.3 While
Loops 172

5.4 Loops with
Vectors and
Matrices;
Vectorizing .180

5.5 Timing 189

Summary 195

Common
Pitfalls195

Programming
Style
Guidelines195

MATLAB. https://doi.org/10.1016/B978-0-323-91750-6.00005-6

157

Copyright © 2023 Elsevier Inc. All rights reserved.

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

the while is usually used as the conditional loop. To keep it simple, that is how

they will be presented here.

In many programming languages, looping through the elements in a vector or

matrix is a very fundamental concept. In MATLAB, however, as it is written to
work with vectors and matrices, looping through elements is usually not nec-

essary. Instead, vectorized code is used, which means replacing the loops

through arrays with the use of built-in functions and operators. Both methods
will be described in this chapter. The earlier sections will focus on “the tradi-

tional programming concepts”, using loops. These will be contrasted with

“the efficient methods”, using vectorized code. Loops are still relevant and nec-
essary in MATLAB in other contexts, just not normally when working with vec-

tors or matrices.

5.1 THE FOR LOOP

The for statement, or the for loop, is used when it is necessary to repeat

statement(s) in a script or function and when it is known ahead of time how
many times the statements will be repeated. The statements that are repeated

are called the action of the loop. For example, it may be known that the action

of the loop will be repeated five times. The terminology used is that we iterate
through the action of the loop five times.

The variable that is used to iterate through values is called a loop variable or an
iterator variable. For example, the variable might iterate through the integers 1

through 5 (e.g., 1, 2, 3, 4, and then 5). Although, in general, variable names

should be mnemonic, it is common in many languages for an iterator variable
to be given the name i (and if more than one iterator variable is needed, i, j, k, l,

etc.). This is historical and is because of the way integer variables were named in

Fortran. However, in MATLAB both i and j are built-in functions that return the
value

ffiffiffiffiffiffiffi�1p
, so using either as a loop variable will override that value. If that is

not an issue, then it is okay to use i as a loop variable.

The general form of the for loop is:

for loopvar=range
action

end

where loopvar is the loop variable, “range” is the range of values through which

the loop variable is to iterate, and the action of the loop consists of all state-

ments up to the end. Just like with if statements, the action is indented to make
it easier to see. The range can be specified using any vector, but normally the

easiest way to specify the range of values is to use the colon operator.

158 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

As an example, we will print a column of numbers from 1 to 5.

The loop could be entered in the Command Window, although, like if and

switch statements, loops will make more sense in scripts and functions. In
the Command Window, the results would appear after the for loop:

>> for i=1:5
fprintf('i is %d\n’,i)

end
i is 1
i is 2
i is 3
i is 4
i is 5

What the for statement accomplished was to print the value of i and then the
newline character for every value of i, from 1 through 5 in steps of 1. The first

thing that happens is that i is initialized to have the value 1. Then, the action of

the loop is executed, which is the fprintf statement that prints “i is” and then
the value of i (1), and then the newline character to move the cursor down.

Then, i is incremented to have the value of 2. Next, the action of the loop is

executed, which prints 2 and the newline. Then, i is incremented to 3 and that
is printed; then, i is incremented to 4 and that is printed; and then, finally, i is

incremented to 5 and that is printed. The final value of i is 5; this value can be
used once the loop has finished.

5.1.1 For Loops That Do Not Use the Iterator Variable
in the Action

In the previous example, the value of the loop variable was used in the action of
the for loop: it was printed. It is not always necessary to actually use the value of

the loop variable, however. Sometimes the variable is simply used to iterate, or

repeat, an action a specified number of times. For example,

for i=1:3
fprintf('I will not chew gum\n')

end

QUICK QUESTION!

How could you print this column of integers (using the tradi-

tional programming method):

0

50

100

150

200

Answer: In a loop, you could print these values starting at 0,

incrementing by 50 and ending at 200. Each is printed using a

field width of 3.

>> for i=0:50:200

fprintf('%3d\n',i)

end

1595.1 The for Loop

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

produces the output:

I will not chew gum
I will not chew gum
I will not chew gum

The variable i is necessary to repeat the action three times, even though the

value of i is not used in the action of the loop.

PRACTICE 5.1

Write a for loop that will print a column of five *’s.

5.1.2 Input in a for Loop

The following script repeats the process of prompting the user for a number,

and echo printing the number (which means simply printing it back out).
A for loop specifies how many times this is to occur. This is another example

in which the loop variable is not used in the action, but, instead, just specifies

how many times to repeat the action.

forecho.m

% This script loops to repeat the action of
% prompting the user for a number and echo-printing it

for iv=1:3
inputnum=input('Enter a number: ');
fprintf('You entered %.1f\n',inputnum)

end

>> forecho
Enter a number: 33
You entered 33.0
Enter a number: 1.1
You entered 1.1
Enter a number: 55
You entered 55.0

QUICK QUESTION!

What would be the result of the following for loop?

for i=4:2:8

fprintf('I will not chew gum\n')

end

Answer: Exactly the same output as above! It does not mat-

ter that the loop variable iterates through the values 4, then 6,

then 8 instead of 1, 2, 3. Because the loop variable is not used

in the action, this is just another way of specifying that the

action should be repeated three times. Of course, using 1:3

makes more sense!

160 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

In this example, the loop variable iv iterates through the values 1 through 3, so

the action is repeated three times. The action consists of prompting the user for
a number and echo-printing it with one decimal place.

5.1.3 Finding Sums and Products

A very common application of a for loop is to calculate sums and products. For
example, instead of just echo printing the numbers that the user enters, we

could calculate the sum of the numbers. To do this, we need to add each value

to a running sum. A running sum keeps changing, as we keep adding to it. First,
the sum has to be initialized to 0.

As an example, we will write a script sumnnums that will sum the n numbers

entered by the user; n is a random integer that is generated. In a script to cal-

culate the sum, we need a loop or iterator variable i, and also a variable to store
the running sum. In this case we will use a variable runsum as the running sum.

Every time through the loop, the next value that the user enters is added to the

value of runsum. This script will print the end result, which is the sum of all of
the numbers, stored in the variable runsum.

sumnnums.m

% sumnnums calculates the sum of the n numbers
% entered by the user

n=randi([3 10]);
runsum=0;
for i=1:n

inputnum=input('Enter a number: ');
runsum=runsum+inputnum;

end
fprintf('The sum is %.2f\n', runsum)

Here is an example in which 3 is generated to be the value of the variable n; the

script calculates and prints the sum of the numbers the user enters, 4+3.2+1.1,
or 8.3:

>> sumnnums
Enter a number: 4
Enter a number: 3.2
Enter a number: 1.1
The sum is 8.30

Another very common application of a for loop is to find a running product.

With a product, the running product must be initialized to 1 (as opposed to
a running sum, which is initialized to 0).

PRACTICE 5.2

Write a script prodnnums that is similar to the sumnnums script but will calculate and print the

product of the numbers entered by the user.

1615.1 The for Loop

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

5.1.4 Preallocating Vectors

When numbers are entered by the user, it is often necessary to store them in a
vector. There are two basic methods that could be used to accomplish this. One

method is to start with an empty vector and extend the vector by adding each

number to it as the numbers are entered by the user. Extending a vector, how-
ever, is very inefficient. What happens is that every time a vector is extended, a

new “chunk” of memorymust be found that is large enough for the new vector,

and all of the values must be copied from the original location in memory to
the new one. This can take a long time to execute.

A bettermethod is to preallocate the vector to the correct size and then change the
value of each element to be the numbers that the user enters. This method

involves referring to each index in the result vector, and placing eachnumber into

the next element in the result vector. This method is far superior, if it is known
ahead of time howmany elements the vector will have. One commonmethod is

to use the zeros function to preallocate the vector to the correct length.

The following is a script that accomplishes this and prints the resulting vector.

The script generates a random integer n and repeats the process n times. Because
it is known that the resulting vector will have n elements, the vector can be

preallocated.

forgenvec.m

% forgenvec creates a vector of length n
% It prompts the user and puts n numbers into a vector

n=randi([2 5]);
numvec=zeros(1,n);
for iv=1:n

inputnum=input('Enter a number: ');
numvec(iv)=inputnum;

end
fprintf('The vector is: \n')
disp(numvec)

Next is an example of executing this script.

>> forgenvec
Enter a number: 44
Enter a number: 2.3
Enter a number: 11
The vector is:

44.0000 2.3000 11.0000

The number could also be read directly into numvec(iv). The variable inputnum

is not necessary.

Note

It is very important to

notice that the loop vari-

able iv is used as the

index into the vector.

162 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

5.1.3 For Loop Example: subplot

A function that is very useful with all types of plots is subplot, which creates a
matrix of plots in the current Figure Window. Three arguments are passed to it

in the form subplot(r,c,n), where r and c are the dimensions of the matrix in

the FigureWindow and n is the number of the particular plot within thismatrix.
The plots are numbered rowwise starting in the upper left corner. Inmany cases,

it is useful to create a subplot in a for loop so the loop variable can iterate

through the integers 1 through n.

For example, if it is desired to have three plots next to each other in one

Figure Window, the function would be called as subplot(1,3,n). The matrix
dimensions in the Figure Window would be 1�3 in this case, and from left

to right the individual plots would be numbered 1, 2, and then 3 (these would

be the values of n). The first two arguments would always be 1 and 3, because
they specify the dimensions of the matrix within the Figure Window.

When the subplot function is called in a loop, the first two arguments will

always be the same as they give the dimensions of the matrix. The third argu-
ment will iterate through the numbers assigned to the elements of the matrix.

When the subplot function is called, it makes the specified element the “active”

plot; then, any plot function can be used, complete with formatting such as axis
labeling and titles within that element. Note that the subplot function just

specifies the dimensions of the matrix in the Figure Window, and which is

the “active” element; subplot itself does not plot anything.

For example, the following subplot shows the difference, in one Figure

Window, between using 20 points and 40 points to plot sin(x) between 0
and 2*π. The subplot function creates a 1 � 2 row vector of plots in the

QUICK QUESTION!

What if you wanted to calculate howmany of the numbers that

the user entered were greater than the average?

Answer: Yes, then you would need to store them in a vector

because youwould have to go back through them to count how

many were greater than the average (or, alternatively, you

could go back and ask the user to enter them again!).

QUICK QUESTION!

If you need to just print the sum or average of the numbers

that the user enters, would you need to store them in a vector

variable?

Answer: No. You could just add each to a running sum as

you read them in a loop.

1635.1 The for Loop

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

FigureWindow, so that the two plots are shown side by side. The loop variable i

iterates through the values 1 and then 2.

The first time through the loop, when i has the value 1, 20*1 or 20 points are
used, and the value of the third argument to the subplot function is 1. The sec-

ond time through the loop, 40 points are used and the third argument to sub-

plot is 2. The sgtitle function (introduced in R2018b) is used to put a title on
the entire Figure Window. The resulting Figure Window with both plots is

shown in Fig. 5.1.

subplotex.m

% Demonstrates subplot using a for loop
for i=1:2

x=linspace(0,2*pi,20*i);
y=sin(x);
subplot(1,2,i)
plot(x,y,'ko')
xlabel('x')
ylabel('sin(x)')
title('sin plot')

end
sgtitle('sin plot with varying # of points'

0 2 4 6
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

si
n(

x)

si
n(

x)

sin plot

0 2 4 6
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
sin plot

sin plot with varying # of points

FIGURE 5.1

Subplot to demonstrate a plot using 20 points and 40 points

Note

that once string manipu-

lating functions have

been covered in

Chapter 7, it will be pos-

sible to have customized

titles (e.g., showing the

number of points).

164 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

5.2 NESTED FOR LOOPS

The action of a loop can be any valid statement(s). When the action of a loop is

another loop, this is called a nested loop.

The general form of a nested for loop is as follows:

for loopvarone = rangeone outer loop

% actionone includes the inner loop

for loopvartwo = rangetwo inner loop
actiontwo

end
end

The first for loop is called the outer loop; the second for loop is called the inner

loop. The action of the outer loop consists (in part; there could be other state-

ments) of the entire inner loop.

As an example, a nested for loop will be demonstrated in a script that will print

a box of stars (*). Variables in the script will specify how many rows and col-

umns to print. For example, if rows has the value 3 and columns has the value 5, a
3 � 5 box would be printed. Because lines of output are controlled by printing

the newline character, the basic algorithm is as follows.

n For every row of output:

n Print the required number of stars
n Move the cursor down to the next line (print ‘\n’)

printstars.m

% Prints a box of stars
% How many will be specified by two variables
% for the number of rows and columns

rows=3;
columns=5;
% loop over the rows
for i=1:rows

% for every row loop to print *'s and then one \n
for j=1:columns

fprintf('*')
end
fprintf('\n')

end

Executing the script displays the output:

>> printstars

1655.2 Nested for Loops

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The variable rows specifies the number of rows to print, and the variable col-

umns specifies how many stars to print in each row. There are two loop vari-
ables: i is the loop variable over the rows and j is the loop variable over the

columns. As the number of rows is known and the number of columns is

known (given by the variables rows and columns), for loops are used. There
is one for loop to loop over the rows, and another to print the required num-

ber of stars for every row.

The values of the loop variables are not used within the loops, but are used

simply to iterate the correct number of times. The first for loop specifies that

the action will be repeated “rows” times. The action of this loop is to print
stars and then the newline character. Specifically, the action is to loop to

print columns stars (e.g., five stars) across on one line. Then, the newline

character is printed after all five stars to move the cursor down to the
next line.

In this case, the outer loop is over the rows, and the inner loop is over the col-
umns. The outer loop must be over the rows because the script is printing a cer-

tain number of rows of output. For each row, a loop is necessary to print the

required number of stars; this is the inner for loop.

When this script is executed, first the outer loop variable i is initialized to 1.

Then, the action is executed. The action consists of the inner loop and then

printing the newline character. So, while the outer loop variable has the
value 1, the inner loop variable j iterates through all of its values. As the

value of columns is 5, the inner loop will print a single star five times. Then,

the newline character is printed and then the outer loop variable i is incre-
mented to 2. The action of the outer loop is then executed again, meaning

the inner loop will print five stars, and then the newline character will be

printed. This continues, and, in all, the action of the outer loop will be exe-
cuted rows times.

Notice that the action of the outer loop consists of two statements (the for loop
and an fprintf statement). The action of the inner loop, however, is only a sin-

gle fprintf statement.

The fprintf statement to print the newline character must be separate from the

other fprintf statement that prints the star character. If we simply had

fprintf('*\n')

as the action of the inner loop (without the separate fprintf), this would print a
long column of 15 stars, not a 3 � 5 box.

166 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

In the previous examples, the loop variables were just used to specify the num-

ber of times the action is to be repeated. In the next example, the actual values
of the loop variables will be printed.

printloopvars.m

% Displays the loop variables
for i=1:3

for j=1:2
fprintf('i=%d, j=%d\n',i,j)

end
fprintf('\n')

end

Executing this script would print the values of both i and j on one line every

time the action of the inner loop is executed. The action of the outer loop con-
sists of the inner loop and printing a newline character, so there is a separation

between the actions of the outer loop:

>> printloopvars
i=1, j=1
i=1, j=2

i=2, j=1
i=2, j=2

i=3, j=1
i=3, j=2

Again, i goes through all of its values from 1 to 3. For each value of i, j goes

through both of its values (1 and 2).

QUICK QUESTION!

How could this script be modified to print a triangle

of stars instead of a box such as the following:

*

**

Answer: In this case, the number of stars to print

in each row is the same as the row number (e.g., one

star is printed in row 1, two stars in row 2, and so on).

The inner for loop does not loop to columns but to the

value of the row loop variable (so we do not need the

variable columns):

printtristars.m

% Prints a triangle of stars
% How many will be specified by a variable
% for the number of rows
rows=3;
for i=1:rows

% inner loop just iterates to the value of i
for j=1:i

fprintf('*')
end
fprintf('\n')

end

1675.2 Nested for Loops

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Now, instead of just printing the loop variables, we can use them to produce a

multiplication table, by multiplying the values of the loop variables.

The following functionmulttable calculates and returns a matrix which is a mul-
tiplication table. Two arguments are passed to the function, which are the num-

ber of rows and columns for this matrix.

multtable.m

function outmat=multtable(rows, columns)
% multtable returns a matrix which is a
% multiplication table
% Format: multtable(nRows, nColumns)

% Preallocate the matrix
outmat=zeros(rows,columns);
for i=1:rows

for j=1:columns
outmat(i,j)=i*j;

end
end
end

In the following example of calling this function, the resulting matrix has three

rows and five columns:

>> multtable(3,5)
ans=

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15

Note that this is a function that returns a matrix. It preallocates the matrix to

zeros, and then replaces each element. Because the number of rows and col-
umns are known, for loops are used. The outer loop loops over the rows,

and the inner loop loops over the columns. The action of the nested loop cal-

culates i* j for all values of i and j. Just like with vectors, it is again important to

notice that the loop variables are used as the indices into the matrix.

First, when i has the value 1, j iterates through the values 1 through 5, so first

we are calculating 1*1, then 1*2, then 1*3, then 1*4, and, finally, 1*5. These
are the values in the first row (first in element outmat(1,1), then outmat(1,2),
then outmat(1,3), then outmat(1,4), and finally outmat(1,5)). Then, when i

has the value 2, the elements in the second row of the output matrix are cal-

culated, as j again iterates through the values from 1 through 5. Finally, when i
has the value 3, the values in the third row are calculated (3*1, 3*2, 3*3, 3*4,
and 3*5).

168 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PRACTICE 5.3

For each of the following (they are separate), determine what would be printed. Then, check your

answers by trying them in MATLAB.

mat=[7 11 3; 3:5];

[r, c]=size(mat);

for i=1:r

fprintf('The sum is %d\n', sum(mat(i,:)))

end

———

for i=1:2

fprintf('%d: ', i)

for j= 1:4

fprintf('%d ', j)

end

fprintf('\n')

end

Another more complicated example is matrix multiplication. Recall from

Chapter 2 that the number of columns of a matrix A must be the same as

the number of rows of a matrix B to multiply A times B, and the elements of
the result matrix C are defined as the sum of products of corresponding ele-

ments in the rows of A and columns of B, or in other words,

A½ �m� n B½ �n� p¼ C½ �m� p

cij¼
Xn
k¼1

aikbkj:

Therefore, to accomplish this, it is necessary to loop through all of the elements
of C (one loop over the rows and one loop over the columns), and for each

element loop through the values of k to calculate the summation. In other

words, three nested loops are required. The following function implements this
algorithm. It first checks the dimensions of the input matrices to make sure that

matrix multiplication is possible (and if not, it returns an empty vector). If it is

possible, it loops to create the output matrix C.

mymatmult.m

function C=mymatmult(A,B)
% mymatmult performs matrix multiplication
% It returns an empty vector if the matrix
% multiplication cannot be performed
% Format: mymatmult(matA, matB)

[m, n]=size(A);
[nb, p]=size(B);

1695.2 Nested for Loops

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

if n �= nb
C=[];

else
% Preallocate C
C=zeros(m,p);
% Outer 2 loops iterate through the elements in C
% which has dimensions m by p
for i=1:m

for j=1:p
% Inner loop performs the sum for each
% element in C
mysum=0;
for k=1:n

mysum=mysum+A(i,k)*B(k,j);
end
C(i,j)=mysum;

end
end

end

5.2.1 Combining Nested For Loops and If Statements

The statements inside of a nested loop can be any valid statements, including
any selection statement. For example, there could be an if or if-else statement as

the action, or part of the action, in a loop.

As an example, assume there is a file called “datavals.dat” containing results

recorded from an experiment. However, some were recorded erroneously.
The numbers are all supposed to be positive. The following script reads from

this file into amatrix. It prints the sum from each row of only the positive num-

bers. We will not assume howmany lines are in the file nor howmany numbers
per line (although we will assume that there are the same number of numbers

on every line, so we can use load).

sumonlypos.m

% Sums only positive numbers from file
% Reads from the file into a matrix and then
% calculates and prints the sum of only the
% positive numbers from each row

load datavals.dat
[r c]=size(datavals);

for row=1:r
runsum=0;
for col=1:c

if datavals(row,col) >= 0
runsum=runsum+datavals(row,col);

end
end
fprintf('The sum for row %d is %d\n',row,runsum)

end

170 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

For example, if the file contains:

33 –11 2
4 5 9

22 5 –7
2 11 3

the output from the program would look like this:

>> sumonlypos
The sum for row 1 is 35
The sum for row 2 is 18
The sum for row 3 is 27
The sum for row 4 is 16

The file is loaded, and the data are stored in a matrix variable. The script finds
the dimensions of the matrix and then loops through all of the elements in the

matrix by using a nested loop; the outer loop iterates through the rows and the

inner loop iterates through the columns. This is important; as an action is
desired for every row, the outer loop has to be over the rows. For each element

an if statement determines whether the element is positive or not. It only adds

the positive values to the row sum. As the sum is found for each row, the runsum
variable is initialized to 0 for every row, meaning inside of the outer loop.

PRACTICE 5.4

Write a functionmymatmin that finds theminimum value in each column of amatrix argument and

returns a vector of the columnminimums. Use the traditional programming method. An example

of calling the function follows:

QUICK QUESTION!

Would it matter if the order of the loops was reversed in this

example, so that the outer loop iterates over the columns and

the inner loop over the rows?

Answer: Yes, as we want a sum for every row the outer loop

must be over the rows.

QUICK QUESTION!

What would you have to change in order to calculate and print

the sum of only the positive numbers from each column

instead of each row?

Answer: You would reverse the two loops, and change the

sentence to say “The sum of column…”. That is all that would

change. The elements in the matrix would still be referenced

as datavals(row,col). The row index is always given first, then

the column index – regardless of the order of the loops.

1715.2 Nested for Loops

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> mat=randi(20,3,4)

mat=

15 19 17 5

6 14 13 13

9 5 3 13

>> mymatmin(mat)

ans=

6 5 3 5

5.3 WHILE LOOPS

The while statement is used as the conditional loop in MATLAB; it is used to
repeat an action when ahead of time it is not known how many times the action

will be repeated. The general form of the while statement is:

while condition
action

end

The action, which consists of any number of statement(s), is executed as long as

the condition is true.

The way it works is that first the condition is evaluated. If it is logically true,

the action is executed. Therefore, to begin with, the while statement is just like

an if statement. However, at that point the condition is evaluated again. If it is
still true, the action is executed again. Then, the condition is evaluated again.

If it is still true, the action is executed again. Then, the condition is....eventu-

ally, this has to stop! Eventually, something in the action has to change
something in the condition so it becomes false. The condition must eventu-

ally become false to avoid an infinite loop. (If this happens, Ctrl-C will exit the

loop.)

As an example of a conditional loop, we will write a function that will find the

first factorial that is greater than the input argument high. For an integer n, the

factorial of n, written as n!, is defined as n!¼1*2*3*4*…*n. To calculate a
factorial, a for loop would be used. However, in this case we do not know the

QUICK QUESTION!

Would the function mymatmin in Practice 5.4 also work for a

vector argument?

Answer: Yes, it should, as a vector is just a subset of a

matrix. In this case, one of the loop actions would be executed

only one time (for the rows if it is a row vector or for the col-

umns if it is a column vector).

172 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

value of n, so we have to keep calculating the next factorial until a level is

reached, which means using a while loop.

The basic algorithm is to have two variables: one that iterates through the values

1,2, 3, and so on, and one that stores the factorial of the iterator at each step.We
start with 1 and 1 factorial, which is 1. Then, we check the factorial. If it is not

greater than high, the iterator variable will then increment to 2 and find its fac-

torial (2). If this is not greater than high, the iterator will then increment to 3
and the function will find its factorial (6). This continues until we get to the first

factorial that is greater than high.

Therefore, the process of incrementing a variable and finding its factorial is

repeated until we get to the first value greater than high. This is implemented
using a while loop:

factgthigh.m

function facgt=factgthigh(high)
% factgthigh returns the first factorial > input
% Format: factgthigh(inputInteger)

i=0;
fac=1;
while fac <= high

i=i+1;
fac=fac*i;

end
facgt=fac;
end

An example of calling the function, passing 5000 for the value of the input argu-

ment high, follows:

>> factgthigh(5000)
ans=

5040

The iterator variable i is initialized to 0, and the running product variable fac,
which will store the factorial of each value of i, is initialized to 1. The first time

thewhile loop is executed, the condition is true: 1 is less than or equal to 5000.
So, the action of the loop is executed, which is to increment i to 1 and fac

becomes 1 (1*1).

After the execution of the action of the loop, the condition is evaluated again. As

it will still be true, the action is executed: i is incremented to 2 and fac will get
the value 2 (1*2). The value 2 is still <= 5000, so the action will be executed

again: i will be incremented to 3 and fac will get the value 6 (2*3). This con-
tinues, until the first value of fac is found that is greater than 5000. As soon as fac
gets to this value, the condition will be false and thewhile loopwill end. At that

point the factorial is assigned to the output argument, which returns the value.

Note

that the variable fac is not

necessary. The output

argument facgt could be

used to calculate the

running product.

1735.3 While Loops

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The reason that i is initialized to 0 rather than 1 is that the first time the

loop action is executed, i becomes 1 and fac becomes 1, so we have 1 and
1!, which is 1.

5.3.1 Multiple Conditions in a While Loop

In the factgthigh function, the condition in the while loop consisted of one

expression, which tested whether the variable fac was less than or equal to

the variable high. In many cases, however, the condition will be more compli-
cated than that and could use either the or operator jj or the and operator &&.

For example, it may be that it is desired to stay in a while loop as long as a var-

iable x is in a particular range:

while x >= 0 && x <= 100

As another example, continuing the action of a loopmay be desired as long as at
least one of two variables is in a specified range:

while x < 50 jj y < 100

5.3.2 Input in a While Loop

Sometimes a while loop is used to process input from the user as long as the
user is entering data in a correct format. The following script repeats the pro-

cess of prompting the user, reading in a positive number, and echo printing

it, as long as the user correctly enters positive numbers when prompted.
As soon as the user types in a negative number, the script will print “OK”

and end.

whileposnum.m

% Prompts the user and echo prints the numbers entered
% until the user enters a negative number

inputnum=input('Enter a positive number: ');
while inputnum >= 0

fprintf('You entered a %d.\n\n',inputnum)
inputnum=input('Enter a positive number: ');

end
fprintf('OK!\n')

When the script is executed, the input/output might look like this:

>> whileposnum
Enter a positive number: 6
You entered a 6.

Enter a positive number:–2
OK!

174 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Note that the prompt is repeated in the script: once before the loop, and then

again at the end of the action. This is done so that every time the condition is
evaluated, there is a new value of inputnum to check. If the user enters a negative

number the first time, no values would be echo-printed:

>> whileposnum
Enter a positive number:–33
OK!

As we have seen previously, MATLAB will give an error message if a character is
entered rather than a number.

>> whileposnum
Enter a positive number: a
Error using input
Unrecognized function or variable 'a'.
Error in whileposnum (line 4)
inputnum=input('Enter a positive number: ');
Enter a positive number:–4
OK!

However, if the character is actually the name of a variable, it will use the value
of that variable as the input. For example:

>> a=5;
>> whileposnum
Enter a positive number: a
You entered a 5.

Enter a positive number:–4
OK!

5.3.2.1 Extending a Vector
If it is desired to store all of the positive numbers that the user enters, we would

store them one at a time in a vector. However, as we do not know ahead of time

howmany elements we will need, we cannot preallocate to the correct size. The
two methods of extending a vector one element at a time are shown here. We

can start with an empty vector and concatenate each value to the vector, or we

can increment an index.

numvec=[];
inputnum=input('Enter a positive number: ');
while inputnum >= 0

numvec=[numvec inputnum];
inputnum=input('Enter a positive number: ');

end

% OR:
i=0;
inputnum=input('Enter a positive number: ');
while inputnum >= 0

i=i+1;
numvec(i)=inputnum;
inputnum=input('Enter a positive number: ');

end

Note

This example illustrates a

very important feature of

while loops: it is possible

that the action will not be

executed at all, if the

value of the condition is

false the first time it is

evaluated.

1755.3 While Loops

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Keep in mind that both of these are inefficient and should be avoided if the

vector can be preallocated.

5.3.3 Counting in a While Loop

Although while loops are used when the number of times the action will be
repeated is not known ahead of time, it is often useful to know howmany times

the action was, in fact, repeated. In that case, it is necessary to count the number

of times the action is executed. The following variation on the previous script
counts the number of positive numbers that the user successfully enters.

countposnum.m

% Prompts the user for positive numbers and echo prints as
% long as the user enters positive numbers

% Counts the positive numbers entered by the user
counter=0;
inputnum=input('Enter a positive number: ');
while inputnum >= 0

fprintf('You entered a %d.\n\n',inputnum)
counter=counter+1;
inputnum=input('Enter a positive number: ');

end
fprintf('Thanks, you entered %d positive numbers.\n',counter)

The script initializes a variable counter to 0. Then, in thewhile loop action, every

time the user successfully enters a number, the script increments the counter
variable. At the end of the script it prints the number of positive numbers that

were entered.

>> countposnum
Enter a positive number: 4
You entered a 4.

Enter a positive number: 11
You entered a 11.

Enter a positive number:–4
Thanks, you entered 2 positive numbers.

PRACTICE 5.5

Write a script avenegnum that will repeat the process of prompting the user for negative numbers

until the user enters a zero or positive number, as just shown. Instead of echo-printing them, how-

ever, the script will print the average (of just the negative numbers). If no negative numbers are

176 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

entered, the script will print an error message instead of the average. Use the traditional pro-

gramming method. Examples of executing this script follow:

>> avenegnum

Enter a negative number: 5

No negative numbers to average.

>> avenegnum

Enter a positive number:–8

Enter a positive number:–3

Enter a positive number:–4

Enter a positive number: 6

The average was–5.00

5.3.4 Error-Checking User Input in a While loop

In most applications, when the user is prompted to enter something, there is a

valid range of values. If the user enters an incorrect value, rather than having the
program carry on with an incorrect value, or just printing an error message, the

program should repeat the prompt. The program should keep prompting the

user, reading the value, and checking it until the user enters a value that is in
the correct range. This is a very common application of a conditional loop:

looping until the user correctly enters a value in a program. This is called

error-checking.

For example, the following script prompts the user to enter a positive number
and loops to print an error-message and repeat the prompt until the user finally

enters a positive number.

readonenum.m

% Loop until the user enters a positive number

inputnum=input('Enter a positive number: ');
while inputnum < 0

inputnum=input('Invalid! Enter a positive number: ');
end
fprintf('Thanks, you entered a %.1f \n',inputnum)

An example of running this script follows:

>> readonenum
Enter a positive number:–5
Invalid! Enter a positive number:–2.2
Invalid! Enter a positive number: 44
Thanks, you entered a 44.0

1775.3 While Loops

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

5.3.4.1 Error-Checking for Integers
Because MATLAB uses the type double by default for all numbers, to check to

make sure that the user has entered an integer, the program has to convert the
input value to an integer type (e.g., int32) and then check to see whether that is

equal to the original input. The following examples illustrate the concept.

If the value of the variable num is a real number, converting it to the type int32

will round it, so the result is not the same as the original value.

>> num = 3.3;
>> inum =int32(num)
inum =

3

>> num == inum
ans =

0

QUICK QUESTION!

How could we vary the previous example so that the script

asks the user to enter positive numbers n times, where n is

an integer defined to be 3?

Answer: Every time the user enters a value, the script

checks and in a while loop keeps telling the user that it is

invalid until a valid positive number is entered. By putting

the error-check in a for loop that repeats n times, the user

is forced eventually to enter three positive numbers, as shown

in the following.

readnnums.m

% Loop until the user enters n positive numbers
n=3;
fprintf('Please enter %d positive numbers\n\n',n)
for i=1:n

inputnum=input('Enter a positive number: ');
while inputnum < 0

inputnum=input('Invalid! Enter a positive number: ');
end
fprintf('Thanks, you entered a %.1f \n',inputnum)

end

>> readnnums

Please enter 3 positive numbers

Enter a positive number: 5.2

Thanks, you entered a 5.2

Enter a positive number: 6

Thanks, you entered a 6.0

Enter a positive number:–7.7

Invalid! Enter a positive number: 5

Thanks, you entered a 5.0

178 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

If, however, the value of the variable num is an integer, converting it to an inte-

ger type will not change the value.

>> num = 4;
>> inum =int32(num)
inum =

4

>> num == inum
ans =

1

The following script uses this idea to error-check for integer data; it loops until

the user correctly enters an integer.

readoneint.m

% Error-check until the user enters an integer
inputnum=input('Enter an integer: ');
num2=int32(inputnum);
while num2 �= inputnum

inputnum=input('Invalid! Enter an integer: ');
num2=int32(inputnum);

end
fprintf('Thanks, you entered a %d \n',inputnum)

Examples of running this script are:

>> readoneint
Enter an integer: 9.5
Invalid! Enter an integer: 3.6
Invalid! Enter an integer:–11
Thanks, you entered a–11

>> readoneint
Enter an integer: 5
Thanks, you entered a 5

Putting these ideas together, the following script loops until the user correctly

enters a positive integer. There are two parts to the condition, as the value must
be positive and must be an integer.

readoneposint.m

% Error checks until the user enters a positive integer
inputnum=input('Enter a positive integer: ');
num2=int32(inputnum);
while num2 �= inputnum jj num2 < 0

inputnum=input('Invalid! Enter a positive integer: ');
num2=int32(inputnum);

end
fprintf('Thanks, you entered a %d \n',inputnum)

Note

this assumes that the

user enters something.

Use the isempty function

to be sure.

1795.3 While Loops

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> readoneposint
Enter a positive integer: 5.5
Invalid! Enter a positive integer:–4
Invalid! Enter a positive integer: 11
Thanks, you entered a 11

PRACTICE 5.6

Modify the script readoneposint to read n positive integers, instead of just one.

5.4 LOOPS WITH VECTORS AND MATRICES;
VECTORIZING

In most programming languages when performing an operation on a vector, a

for loop is used to loop through the entire vector, using the loop variable as
the index into the vector. In general, in MATLAB, assuming there is a vector

variable vec, the indices range from 1 to the length of the vector, and the

for statement loops through all of the elements performing the same opera-
tion on each one:

for i=1:length(vec)
% do something with vec(i)

end

In fact, this is one reason to store values in a vector. Typically, values in a vector
represent “the same thing”, so, typically in a program the same operation

would be performed on every element.

Similarly, for an operation on a matrix, a nested loop would be required, and

the loop variables over the rows and columns are used as the subscripts into the
matrix. In general, assuming a matrix variable mat, we use size to return sepa-

rately the number of rows and columns, and we use these variables in the for

loops. If an action is desired for every row in the matrix, the nested for loop
would look like this:

[r, c]=size(mat);
for row=1:r

for col=1:c
% do something with mat(row,col)

end
end

For example, if we desire to sum all of the elements in each row, the outer loop

would be over the rows. If, instead, an action is desired for every column in the
matrix, the outer loop would be over the columns. (Note, however, that the

180 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

reference to a matrix element always refers to the row index first and then the

column index.)

[r, c]=size(mat);
for col=1:c

for row=1:r
% do something with mat(row,col)

end
end

In some cases, the order of the loops does notmatter. For example, if we wanted

an overall sum of all elements in the matrix, the outer loop could be over the
rows or columns.

Typically, looping through vectors or matrices is not necessary in MATLAB!

Although for loops are very useful for many other applications in MATLAB,
they are not typically used for operations on vectors or matrices; instead,

the efficient method is to use built-in functions and/or operators. This is

called vectorized code. The use of loops and selection statements with vectors
and matrices is a basic programming concept with many other languages, and

so both “the traditional programming method” and “the efficient method” are

highlighted in this section and, to some extent, throughout the rest of
this book.

5.4.1 Vectorizing Sums and Products

For example, let us say that we want to perform a scalar multiplication, in this

case multiplying every element of a vector v by 3, and store the result back in v,

where v is initialized as follows:

>> v = [3 7 2 1];

THE TRADITIONAL METHOD
To accomplish this, we can loop through all of the elements in the vector and multiply each

element by 3. In the following, the output is suppressed in the loop, and then the resulting

vector is shown:

>> for i=1:length(v)

v(i)=v(i)*3;

end

>> v

v=

9 21 6 3

1815.4 Loops with Vectors and Matrices; Vectorizing

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

It is important to understand that although MATLAB has this efficient method,

many other languages do not and a loop must be used. This also shows what is
“under the hood,” for example, how the efficientmethod inMATLAB is actually

accomplished.

How could we calculate the factorial of n, n!¼1*2*3*4 *…*n?

THE TRADITIONAL METHOD
The basic algorithm is to initialize a running product to 1 and multiply the running product by

every integer from 1 to n. This is implemented in a function:

myfact.m

function runprod=myfact(n)
% myfact returns n!
% Format of call: myfact(n)

runprod=1;
for i=1:n

runprod=runprod*i;
end
end

Any positive integer argument could be passed to this function, and it will calculate the

factorial of that number. For example, if 5 is passed, the function will calculate and return

1*2*3*4*5, or 120:

>> myfact(5)

ans=

120

Again, it is important to understand the traditional method using a loop, but MATLAB has

a built-in function to do this.

THE EFFICIENT METHOD

>> v=v*3

182 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PRACTICE 5.7

Write a function that imitates the cumprod function. Use the method of preallocating the output

vector.

QUICK QUESTION!

MATLAB has a cumsum function that will return a vector of all

of the running sums of an input vector. However, many other

languages do not, so how could we write our own?

Answer: Essentially, there are two programming methods

that could be used to simulate the cumsum function. One

method is to start with an empty vector and extend the vector

by adding each running sum to it as the running sums are cal-

culated. A better method is to preallocate the vector to the

correct size and then change the value of each element to

be successive running sums.

myveccumsum.m

function outvec=myveccumsum(vec)
% myveccumsum imitates cumsum for a

vector
% It preallocates the output vector
% Format: myveccumsum(vector)

outvec=zeros(size(vec));
runsum=0;
for i=1:length(vec)

runsum=runsum+vec(i);
outvec(i)=runsum;

end
end

An example of calling the function follows:

>> myveccumsum([5 9 4])

ans=

5 14 18

THE EFFICIENT METHOD
MATLAB has a built-in function, factorial, that will find the factorial of an integer n. The prod

function could also be used to find the product of the vector 1:5.

>> factorial(5)

ans=

120

>> prod(1:5)

ans=

120

1835.4 Loops with Vectors and Matrices; Vectorizing

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PRACTICE 5.8

Modify the functionmatcolsum. Create a functionmatrowsum to calculate and return a vector of all

of the row sums instead of column sums. For example, calling it and passing the mat variable

above would result in the following:

>> matrowsum(mat)

ans=

12 14

QUICK QUESTION!

How would we sum each individual column of a matrix?

matcolsum.m

Note that the output argument will be a row vector containing

the same number of columns as the input argument matrix.

Also, as the function is calculating a sum for each column,

the runsum variable must be initialized to 0 for every column,

so it is initialized inside of the outer loop.

Answer: The traditional programming method would

require a nested loop in which the outer loop is over the col-

umns. The function will sum each column and return a row

vector containing the results.

>> mat=[3:5; 2 5 7]

mat=

3 4 5

2 5 7

>> matcolsum(mat)

ans=

5 9 12

Of course, the built-in sum function in MATLABwould accom-

plish the same thing, as we have already seen.

function outsum=matcolsum(mat)
% matcolsum finds the sum of every column in a matrix
% Returns a vector of the column sums
% Format: matcolsum(matrix)

[row, col]=size(mat);

% Preallocate the vector to the number of columns
outsum=zeros(1,col);

% Every column is being summed so the outer loop
% has to be over the columns
for i=1:col

% Initialize the running sum to 0 for every column
runsum=0;
for j=1:row

runsum=runsum+mat(j,i);
end
outsum(i)=runsum;

end
end

184 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

5.4.2 Vectorizing Loops with Selection Statements

In many applications, it is useful to determine whether numbers in a matrix are
positive, zero, ornegative. This requires a nested loop to loopover the elements in

thematrix, and for each, use a nested if-else statement to determine the outcome.

THE TRADITIONAL METHOD
A function signum follows that will accomplish this:

signum.m

function outmat=signum(mat)
% signum imitates the sign function
% Format: signum(matrix)

[r, c]=size(mat);
for i=1:r

for j=1:c
if mat(i,j) > 0

outmat(i,j)=1;
elseif mat(i,j)== 0

outmat(i,j)=0;
else

outmat(i,j)=–1;
end

end
end
end

Here is an example of using this function:

>> mat=[0 4–3;–1 0 2]

mat=

0 4 –3

–1 0 2

>> signum(mat)

ans=

0 1 –1

–1 0 1

THE EFFICIENT METHOD
Close inspection reveals that the function accomplishes the same task as the built-in sign

function!

>> sign(mat)

ans=

0 1 –1

–1 0 1

1855.4 Loops with Vectors and Matrices; Vectorizing

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

QUICK QUESTION!

Determine what the following function accomplishes:

xxx.m

function logresult=xxx(vec)
% QQ for you–what does this do?

logresult=false;
i=1;
while i <= length(vec) && logresult== false

if vec(i) �= 0
logresult=true;

end
i=i+1;

end
end

Answer: The output produced by this function is the same

as the any function for a vector. It initializes the output argu-

ment to false. It then loops through the vector and, if any ele-

ment is nonzero, changes the output argument to true. It

loops until either a nonzero value is found or it has gone

through all elements.

QUICK QUESTION!

Does the order of the loops matter in the signum function? Answer: No.

QUICK QUESTION!

Determine what the following function accomplishes.

yyy.m

function logresult=yyy(mat)
% QQ for you - what does this do?

counter=0;
[r, c]=size(mat);
for i=1:r

for j=1:c
if mat(i,j) �= 0

counter=counter+1;
end

end
end

logresult=counter== numel(mat);
end

Answer: The output produced by this function is the same

as the all function. It loops through all elements of a matrix

(the order of the loops does not matter) and counts how many

elements are nonzero. Then, it compares that number to the

total number of elements in the matrix.

186 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

As another example, we will write a function that will receive a vector and an

integer as input arguments and will return a logical vector that stores logical
true only for elements of the vector that are greater than the integer and false

for the other elements.

Note that as the vector was preallocated to false, the else clause is not necessary.

THE TRADITIONAL METHOD
The function receives two input arguments: the vector, and an integer n with which to

compare. It loops through every element in the input vector, and stores in the result vector

either true or false depending on whether vec(i) > n is true or false.

testvecgtn.m

function outvec=testvecgtn(vec,n)
% testvecgtn tests whether elements in vector
% are greater than n or not
% Format: testvecgtn(vector, n)

% Preallocate the vector to logical false
outvec=false(size(vec));
for i=1:length(vec)

% If an element is > n, change to true
if vec(i) > n

outvec(i)=true;
end

end
end

>> ov=testvecgtn([44 2 11–3 5 8], 6)

ov=

1 0 1 0 0 1

>> class(ov)

ans=

logical

THE EFFICIENT METHOD
As we have seen, the relational operator > will automatically create a logical vector.

testvecgtnii.m

function outvec=testvecgtnii(vec,n)
% testvecgtnii tests whether elements in vector
% are greater than n or not with no loop
% Format: testvecgtnii(vector, n)

outvec=vec > n;
end

1875.4 Loops with Vectors and Matrices; Vectorizing

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Because the focus of this book is the programming concepts, it is important to

understand the fundamental, traditional concepts of loops and selection state-
ments. However, it is also useful to know how to use MATLAB efficiently.

PRACTICE 5.9

Call the function testvecgtnii, passing a vector and a value for n. Use MATLAB code to count how

many values in the vector were greater than n.

5.4.3 Tips for Writing Efficient Code

To be able to write efficient code in MATLAB, including vectorizing, there are
several important features to keep in mind:

n Scalar and array operations

n Logical vectors

n Built-in functions
n Preallocation of vectors

There are many functions in MATLAB that can be utilized instead of code that

uses loops and selection statements. These functions have been demonstrated
already but it is worth repeating them to emphasize their utility:

n sum and prod: find the sum or product of every element in a vector or

column in a matrix
n cumsum and cumprod: return a vector or matrix of the cumulative

(running) sums or products

n min andmax: find theminimum value in a vector or in every column of a
matrix

n any, all, find: work with logical expressions

n “is” functions, such as isletter and isequal: return logical values

In almost all cases, code that is faster to write by the programmer is also faster

forMATLAB to execute. So, “efficient code”means that it is both efficient for the

programmer and for MATLAB.

PRACTICE 5.10

Vectorize the following (re-write the code efficiently):

i=0;

for inc=0: 0.5: 3

i=i+1;

myvec(i)=sqrt(inc);

end

188 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

———————————————————————————————————

[r c]=size(mat);

newmat=zeros(r,c);

for i=1:r

for j=1:c

newmat(i,j)=sign(mat(i,j));

end

end

MATLAB has a built-in function checkcode that can detect potential problems

within scripts and functions. Consider, for example, the following script that
extends a vector within a loop:

badcode.m

for j=1:4
vec(j)=j

end

The function checkcodewill flag this, as well as the good programming practice

of suppressing output within scripts:

>> checkcode('badcode')
L 2 (C 5-7): The variable 'vec' appears to change size on every loop

iteration (within a script). Consider preallocating for speed.
L 2 (C 12): Terminate statement with semicolon to suppress output

(within a script).

The same information is shown in Code Analyzer Reports, which can be pro-

duced within MATLAB for one file (script or function) or for all code files
within a folder. Clicking on the down arrow for the Current Folder, and then

choosing Reports and thenCode Analyzer Report will check the code for all files

within the Current Folder. When viewing a file within the Editor, click on the
down arrow and then Show Code Analyzer Report for a report on just that

one file.

5.5 TIMING

MATLAB has built-in functions that determine how long it takes code to exe-

cute. One set of related functions is tic/toc. These functions are placed around

code and will print the time it took for the code to execute. Essentially, the func-
tion tic turns a timer on, and then toc evaluates the timer and prints the result.

Here is a script that illustrates these functions.

1895.5 Timing

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

fortictoc.m

tic
mysum=0;
for i=1:20000000

mysum=mysum+i;
end
toc

>> fortictoc
Elapsed time is 0.087294 seconds.

Here is an example of a script that demonstrates howmuch preallocating a vec-

tor speeds up the code.

tictocprealloc.m

% This shows the timing difference between
% preallocating a vector vs. not

clear
disp('No preallocation')
tic
for i=1:10000

x(i)=sqrt(i);
end
toc

disp('Preallocation')
tic
y=zeros(1,10000);
for i=1:10000

y(i)=sqrt(i);
end
toc

>> tictocprealloc
No preallocation
Elapsed time is 0.005070 seconds.
Preallocation
Elapsed time is 0.000273 seconds.

Note

that when using timing

functions such as tic/toc,

be aware that other pro-

cesses running in the

background (e.g., any

web browser) will affect

the speed of your code.

QUICK QUESTION!

Preallocation can speed up code, but to preallocate it is nec-

essary to know the desired size. What if you do not know the

eventual size of a vector (or matrix)? Does that mean that you

have to extend it rather than preallocating?

Answer: If you know themaximumsize that it could possibly

be, you can preallocate to a size that is larger than necessary

and then delete the “unused” elements. To do that, you would

have to count the number of elements that are actually used.

For example, if you have a vector vec that has been preallo-

cated and a variable counter that stores the number of ele-

ments that were actually used, this will trim the

unnecessary elements:

vec=vec(1:counter)

190 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

MATLAB also has a Profiler that will generate detailed reports on execution time

of codes. In newer versions of MATLAB, from the Editor click on Run and Time;
this will bring up a report in the Profile Viewer. Choose the function name to

see a very detailed report, including a Code Analyzer Report. From the Com-

mand Window, this can be accessed using profile on and profile off, and
profile viewer.

>> profile on
>> tictocprealloc
No preallocation
Elapsed time is 0.003656 seconds.
Preallocation
Elapsed time is 0.001949 seconds.
>> profile viewer
>> profile off

Data Science and Machine Learning Supplement
Split Validation and Cross Validation
Once a labeled data set has been cleaned up (replacing missing data values, for

example), it is necessary to break the data into training and testing sets. The

training data is used to train the model by using the labels. The model
“predicts” the labels and compares the results to the actual labels. Once the

desired accuracy is obtained, the model is then tested using the test data set.

Frequently, the training set is approximately 80% of the original data, and
the remaining 20% is reserved for the test data set.

For the training, the training data set is also often split into an initial training
set and a validation set. An 80/20 split is common for this, also. The validation

set is also sometimes called the holdout set, as it consists of data that were held

out of the original training. This process of splitting the training data set to
validate the model is called split validation.

Split validation is not always possible, however. For example, if the data set is
fairly small, splitting the training data into two data sets is not a viable option.

In this case, a different process called cross validation can be used. One type of

cross validation, called k-fold validation, involves splitting the training data
into k sets and then iterating until each set has been used as the validation

set. For example, for a 4-fold validation, the algorithm would look like this:

n Break the data into four sets (of the same size).
n Loop four times using an iterator variable i. Each time in the loop:

n Use data set i as the validation set.

n Use all others as the training set.
n Train, validate, and get results.

n Average the results.

Each iteration through the loop is called a fold.

1915.5 Timing

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

In summary, first the data are split into training and testing data sets. Then, a

validation method is chosen. If split validation is used, the training set is split
into an initial training set and a validation set. The model is trained using the

initial training set, and then the validation set is used to predict labels and com-

pare the predictions to the actual labels. If k-fold validation is chosen, this
validation is done in a loop, each time using a different subset of the training

set as the validation set. Once the training and validation have been completed

using the training set, and the results are known, the testing set is then used to
test the model. The testing set has not been used at all in the training process.

Again, the model predicts the labels for the testing set, and compares to the

actual labels.

Randomizing Data
When working with classification algorithms, before data sets can be split for

either validationmethod, the data need to be randomized. The reason for this is
to remove possibly hidden biases in the data, to make sure that the training and

test sets are representative of the entire data set. For example, sometimes labeled

data are grouped by the categories, or labels. Thismeans that the last 20%might
be all in one category, so it would certainly not be able to test for all categories.

Having data that are sorted chronologically or alphabetically could also intro-

duce biases. So, the first step is to randomly “scramble” the original data set. In
MATLAB, this can be done with the randperm function. The function

randperm(n) randomly permutates the integers from 1 through n and returns
the resulting vector.

>> randperm(6)
ans=

3 5 4 2 1 6

Therefore, to randomize the rows of a matrix, a random permutation of the

integers from 1 through the number of rows is obtained, and then this is used
to index into the rows. It is a good idea to set the seed for the random number

generators first.

>> rng('shuffle')
>> dataset=randi([1, 100], 5, 6)
dataset=

81 15 15 41 24 50
44 14 86 8 42 49
92 87 63 24 5 34
19 58 36 13 91 91
27 55 52 19 95 37

>> [r, c]=size(dataset);
>> dataset=dataset(randperm(r), :)
dataset=

81 15 15 41 24 50
19 58 36 13 91 91

192 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

92 87 63 24 5 34
27 55 52 19 95 37
44 14 86 8 42 49

This is an example of vectorized code. Loops are not necessary to accomplish
this task in MATLAB.

Visualizing Data Correlations
Let us examine the columns of the following matrix:

>> mat
mat=

4.0000 2.0000 9.1000 1.0000
4.0000 2.7000 8.0000 2.0000
1.0000 3.1000 8.2000 3.0000
9.0000 4.0000 5.9000 4.0000
6.0000 4.5000 5.0000 5.0000
4.0000 5.3000 3.6000 6.0000
8.0000 5.9000 3.3000 7.0000
8.0000 6.4000 3.0000 8.0000
6.0000 7.1000 1.8000 9.0000
3.0000 9.0000 1.1000 10.0000

The first column seems to be random, and in fact it was created using the randi

function. In the second column, the numbers are in the range from 2 to 9 and

rise from one row to the next. In the third column, the numbers go down from
9.1 to 1.1. The final column stores the integers 1 to 10, which rise regularly in

steps of 1. So, questions might be: how well do these columns correlate with

each other, and is there a good way to visualize this? The correlation coefficient
matrix shows all of the correlations.

>> corrcoef(mat)
ans=

1.0000 0.1833 –0.3284 0.2528
0.1833 1.0000 –0.9699 0.9872

–0.3284 –0.9699 1.0000 –0.9835
0.2528 0.9872 –0.9835 1.0000

For example, the last row shows how well the fourth column correlates with
each of the columns. As we might expect, there is not much of a correlation

between the first and fourth columns, as evidenced by the correlation coeffi-

cient of .02528. We can visualize the correlations between each of the first three
columns and the last column using a for loop to create a subplot, as seen in

Fig. 5.2.

for i=1:3
subplot(1,3,i)
plot(mat(:,i), mat(:,4), '*')

end
sgtitle('Correlations')

1935.5 Timing

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The first plot, on the left, shows the first column plotted against the fourth, and

there does not seem to be any kind of a trend. The second, middle, plot shows

the second column plotted against the fourth, and it almost looks like a straight
line rising, which corresponds to the positive correlation coefficient 0.9872.

The plot on the right plots the third column against the fourth. These points

go down, but not quite in as straight a line as the previous, which is explained
by the negative correlation coefficient of�0.9835.

n Explore Other Interesting Features

Explore what happens when you use a matrix rather than a vector to specify

the range in a for loop. For example,

for i=mat
disp(i)

end

Take a guess before you investigate!

Try the pause function in loops.

Investigate the vectorize function.

The tic and toc functions are in the timefun help topic. Type help timefun to

investigate some of the other timing functions. n

0 5 10
1

2

3

4

5

6

7

8

9

10

2 4 6 8
1

2

3

4

5

6

7

8

9

10

0 5 10
1

2

3

4

5

6

7

8

9

10

Correlations

FIGURE 5.2

Correlations.

194 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

SUMMARY

COMMON PITFALLS

n Forgetting to initialize a running sum or count variable to 0

n Forgetting to initialize a running product variable to 1

n In cases where loops are necessary, not realizing that if an action is
required for every row in a matrix, the outer loop must be over the rows

(and if an action is required for every column, the outer loopmust be over

the columns)
n Not realizing that it is possible that the action of a while loop will never

be executed

n Not error-checking input into a program
n Not vectorizing code whenever possible. If it is not necessary to use loops

in MATLAB, don’t!

n Forgetting that subplot numbers the plots rowwise rather than
columnwise.

n Not realizing that the subplot function just creates a matrix within the

Figure Window. Each part of this matrix must then be filled with a plot,
using any type of plot function.

PROGRAMMING STYLE GUIDELINES

n Use loops for repetition only when necessary
n for statements as counted loops.

n while statements as conditional loops.

n Do not use i or j for iterator variable names if the use of the built-in
constants i and j is desired.

n Indent the action of loops.

n If the loop variable is just being used to specify how many times the
action of the loop is to be executed, use the colon operator 1:n, where n is

the number of times the action is to be executed.

n Preallocate vectors and matrices whenever possible (when the size is
known ahead of time).

n When data are read in a loop, only store them in an array if it will be

necessary to access the individual data values again.
n Vectorize whenever possible.

MATLAB Reserved Words

for
end
while

195Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

MATLAB Functions and Commands

subplot
sgtitle
factorial
checkcode
tic / toc

profile

Exercises

1. Write a for loop that will print the column of real numbers from 1.5 to 2.7 in

steps of 0.2.

2. In the Command Window, write a for loop that will iterate through the integers

from 32 to 255. For each, show the corresponding character from the character

encoding. Play with this! Try printing characters beyond the standard ASCII, in

small groups. For example, print the characters that correspond to integers

from 300 to 340.

3. Prompt the user for an integer n and print “MATLAB rocks!” n times.

4. Whenwould itmatter if a for loop contained for i = 1:3 versus for i = [3 5

6], and when would it not matter?

5. Write a function sumsteps2 that calculates and returns the sum of 1 to n in

steps of 2, where n is an argument passed to the function. For example, if 11 is

passed, it will return 1+3+5+7+9+11. Do this using a for loop.

6. Write a function prodby2 that will receive a value of a positive integer n and will

calculate and return the product of the odd integers from 1 to n (or from 1 to n-1

if n is even). Use a for loop.

7. Write a script that will:

n generate a random integer in the inclusive range from 2 to 5.

n loop that many times to

n prompt the user for a number.

n print the sum of the numbers entered so far with one decimal place.

8. Write a script that will load data from a file into a matrix. Create the data file

first, andmake sure that there is the same number of values on every line in the

file so that it can be loaded into a matrix. Using a for loop, it will then create a

subplot for every row in the matrix, and will plot the numbers from each row

element in the Figure Window. Create an overall title using sgtitle.

9. Write code that will prompt the user for five numbers, and store them in a

vector. Make sure that you preallocate the vector!

10. With a matrix, when would:

n your outer loop be over the rows?

n your outer loop be over the columns?

n it not matter which is the outer and which is the inner loop?

196 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

11. Write a functionmyones that will receive two input arguments n andm and will

return an nxmmatrix of all ones. Do NOT use any built-in functions (so, yes, the

code will be inefficient).

12. Write a script that will print the following multiplication table:

1
2 4
3 6 9
4 8 12 16

13. Write a function that will receive a matrix as an input argument, and will

calculate and return the overall average of all numbers in the matrix. Use

loops, not built-in functions, to calculate the average.

14. Trace this to determine the output, and then enter it to verify your answer.

fprintf('%d: ', i)
for j=i:-1:1

fprintf('*')
end
fprintf('\n')
end

15. Write an algorithm for an ATM program. Think about where there would be

selection statements, menus, loops (counted vs. conditional), and so forth, but

do not write MATLAB code, just an algorithm (pseudo-code).

16. Trace this to figure out what the result will be, and then type it into MATLAB to

verify the results.

Ch5Ex16.m

count=0;
number=8;
while number > 3

fprintf('number is %d\n', number)
number=number–2;
count=count+1;

end
fprintf('count is %d\n', count)

17. Write a script that will generate random integers in the range from 0 to 50, and

print them, until one is finally generated that is greater than 25. The script

should print how many attempts it took.

18. The inverse of the mathematical constant e can be approximated as follows:

1

e
� 1�1

n

� �n

Write a script that will loop through values of n until the difference between the

approximation and the actual value is less than 0.0001. The script should then

print out the built-in value of e�1 and the approximation to four decimal places,

and also print the value of n required for such accuracy.

197Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

19. Write a script will prompt the user for a keyword in MATLAB, error-checking

until a keyword is entered.

20. A blizzard is a massive snowstorm. Definitions vary, but for our purposes we

will assume that a blizzard is characterized by both winds of 30 mph or higher

and blowing snow that leads to visibility of 0.5 miles or less, sustained for at

least four hours. Data from a storm one day have been stored in a file

stormtrack.dat. There are 24 lines in the file, one for each hour of the day. Each

line in the file has the wind speed and visibility at a location. Create a sample

data file. Read this data from the file and determine whether blizzard

conditions were met during this day or not.

21. For the following code, explain under what circumstance(s) the action of the

while loop would be skipped:

num=input('Enter a number: ');
while num >= 0

fprintf('You entered a %.1f!\n', num)
num=input('Enter a number: ');

end
disp('That is all.')

22. Explain why the following code would result in an infinite loop and give an

example of how this could be fixed.

value=3;

while value < 6
fprintf('value is %d\n', value)

end

23. Write a script called prtemps that will prompt the user for a maximum Celsius

value in the range from�16 to 20; error-check to make sure it is in that range.

Then, print a table showing degrees Fahrenheit and degrees Celsius until this

maximum is reached. The first value that exceeds the maximum should not be

printed. The table should start at 0 degrees Fahrenheit, and increment by 5

degrees Fahrenheit until the max (in Celsius) is reached. Both temperatures

should be printed with a field width of 6 and one decimal place. The formula is

C¼5/9 (F-32).

24. Vectorize the following codes. Write one statement that would accomplish the

same end result. Assume that v is a vector variable that has been initialized.

for i=1:length(v)
newv(i)=sqrt(v(i));

end
newv % Just for display

25. The following code was written by somebody who does not know how to

use MATLAB efficiently. Rewrite this as a single statement that will

accomplish exactly the same thing for a matrix variable mat (e.g., vectorize

this code):

198 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

[r c]=size(mat);
for i=1:r

for j=1:c
mat(i,j)=mat(i,j)*2;

end
end

26. Vectorize the following code. Write one statement that would accomplish the

same end result. Assume that mata is a matrix variable that has been

initialized.

[r c]=size(mata);
for j=1:c

runsum=0;
for i=1:r

runsum=runsum+mata(i,j);
end
resvec(j)=runsum;

end
resvec % Just for display

27. Unvectorize the following code! Write code, including a nested for loop, that will

accomplish the same end result. You may assume that the variable mat has

been initialized to be a matrix of numbers.

result=mat+2

28. Give some examples of when you would need to use a counted loop in MATLAB,

and when you would not.

29. For each of the following, decide whether you would use a for loop, awhile loop,

a nested loop (and if so what kind, e.g., a for loop inside of another for loop, a

while loop inside of a for loop, etc.), or no loop at all.

n sum the integers 1 through 50:

n add 3 to all numbers in a vector:

n prompt the user for a string, and keep doing this until the string that the user

enters is a keyword in MATLAB:

n find the minimum in every column of a matrix:

n prompt the user for 5 numbers and find their sum:

n prompt the user for 10 numbers, find the average and also find how many of

the numbers were greater than the average:

n generate a random integer n in the range from 10 to 20. Prompt the user for

n positive numbers, error-checking tomake sure you get n positive numbers

(and just echo print each one):

n prompt the user for positive numbers until the user enters a negative

number. Calculate and print the average of the positive numbers, or an error

message if none are entered:

30. Write a script that will prompt the user for a number in the inclusive range from

1 to 10 and error-check until the user enters a number in the correct range.

Each time the user enters an invalid number, it prints whether it is too low or

too high. It then prints the valid number.

199Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

31. The Wind Chill Factor (WCF) measures how cold it feels with a given air

temperature T (in degrees Fahrenheit) and wind speed V (in miles per hour).

One formula for WCF is

WCF¼ 35:7 + 0:6T�35:7 V0:16
� �

+ 0:43T V0:16
� �

Write a function to receive the temperature and wind speed as input

arguments, and return the WCF. Using loops, print a table showing wind chill

factors for temperatures ranging from�20 to 55 in steps of 5, and wind speeds

ranging from 0 to 55 in steps of 5. Call the function to calculate each wind chill

factor.

32. Instead of printing the WCFs in the previous problem, create a matrix of WCFs

and write them to a file.

33. Write a script to add two 30-digit numbers and print the result. This is not as easy

as it might sound at first, because integer types may not be able to store a value

this large.Oneway to handle large integers is to store them in vectors,whereeach

element in the vector stores a digit of the integer. Your script should initialize two

30-digit integers, storing each in a vector, and then add these integers, also

storing the result in a vector. Create the original numbers using the randi

function. Hint: add two numbers on paper first, and pay attention to what you do!

34. Write a “Guess My Number Game” program. The program generates a random

integer in a specified range, and theuser (the player) has toguess thenumber. The

programallows the use to play asmany times as theywould like; at the conclusion

of each game, the program asks whether the player wants to play again.

The basic algorithm is:

1. The program starts by printing instructions on the screen.

2. For every game:

n the program generates a new random integer in the range from MIN to

MAX. Treat MIN andMAX like constants; start by initializing them to 1 and

100

n loop to prompt the player for a guess until the player correctly guesses

the integer

n for each guess, the program prints whether the player’s guess was too

low, too high, or correct

n at the conclusion (when the integer has been guessed):

n print the total number of guesses for that game

n print a message regarding how well the player did in that game (e.g.,

the player took way too long to guess the number, the player was

awesome, etc.). To do this, you will have to decide on ranges for your

messages and give a rationale for your decision in a comment in the

program.

3. After all games have been played, print a summary showing the average

number of guesses.

200 CHAPTER 5: Loop Statements and Vectorizing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Data Science and Machine Learning

35. How many possible permutations are there for character vectors? For

example, a character vector that stores ‘A’ and ‘B’ could be ‘AB’ or ‘BA’. What

about 3 characters, or 4?

36. Create a character vector variable as follows:

>> word= 'AALMTB';

Use the randperm function to randomly scramble the characters, and store

the result in a variable ‘newword’, for example:

newword=
'TALMBA'

Now put this in a loop! 20 times, randomly scramble the characters and display

the results. Did you get ‘MATLAB’?

201Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This page intentionally left blank

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

CHAPTER 6

MATLAB Programs

KEY TERMS

functions that return

more than one value

functions that do not

return any values

side effects

call-by-value

modular programs

main program

main function

local function

subfunction

menu-driven

variable scope

base workspace

local variable

global variable

persistent variable

declaring variables

bug

debugging

syntax errors

runtime errors

logical errors

tracing

breakpoints

breakpoint alley

function stubs

code cells

Chapter 3 introduced scripts, live scripts, and user-defined functions. In that

chapter, we saw how to write scripts, which are sequences of statements that

are stored in MATLAB® code files and then executed. We also saw how to write
user-defined functions, also stored in MATLAB code files (either in their own or

in scripts) that calculate and return a single value. In this chapter, we will
expand on these concepts and introduce other kinds of user-defined functions.

We will show how MATLAB programs consist of combinations of scripts and

user-defined functions. The mechanisms for interactions of variables in code
files and the Command Window will be explored. Techniques for finding

and fixing mistakes in programs will be reviewed. Finally, the use of tasks in

live scripts and using code cells in scripts will be introduced.

6.1 MORE TYPES OF USER-DEFINED FUNCTIONS

We have already seen how to write a user-defined function that calculates and

returns one value. This is just one type of function. It is also possible to have
functions that return more than one value, and functions that do not return

any values. We will categorize functions as follows:

CONTENTS

6.1 More Types of
User-Defined
Functions ...203

6.2 MATLABProgram
Organization ..212

6.3 Application:
Menu-Driven
Modular
Program218

6.4 Variable
Scope 224

6.5 Debugging
Techniques .229

6.6 Tasks in Live
Scripts, Code
Cells, and
Publishing
Code234

Summary 241

Common
Pitfalls241

Programming
Style
Guidelines241

MATLAB. https://doi.org/10.1016/B978-0-323-91750-6.00006-8

203

Copyright © 2023 Elsevier Inc. All rights reserved.

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n Functions that calculate and return one value

n Functions that calculate and return more than one value

n Functions that just accomplish a task, such as printing, without returning
any values

Thus, although many functions calculate and return values, some do not.

Instead, some functions just accomplish a task. There are differences between

these three types of functions, including the format of the function headers and
also the way in which the functions are called. Regardless of what kind of func-

tion it is, all functions must be defined, and all function definitions consist of

the header and the body. Also, the function must be called for it to be utilized.
Although functions can be stored in script code files, for now we will concen-

trate on functions that are stored in their own code files with an extension of .m.

In general, any function in MATLAB consists of the following:

n The function header (the first line); this has:

n the reserved word function
n if the function returns values, the name(s) of the output argument(s),

followed by the assignment operator (¼)

n the name of the function (important: this should be the same as the
name of the file in which this function is stored to avoid confusion)

n the input arguments in parentheses, if there are any (separated by

commas if there is more than one).

n A comment that describes what the function does (this is printed if help

is used).

n The body of the function, which includes all statements, including
putting values in all output arguments if there are any.

n end at the end of the function.

6.1.1 Functions That Return More Than One Value

Functions that return one value have one output argument, as we saw previ-

ously. Functions that returnmore than one valuemust, instead, havemore than
one output argument in the function header in square brackets. That means

that in the body of the function, values must be put in all output arguments

listed in the function header. The general form of a function definition for a
function that calculates and returns more than one value looks like this:

functionname.m

function [output arguments]=functionname(input arguments)
% Comment describing the function
% Format of function call

Statements here; these must include putting values in all of the
output arguments listed in the header
end

204 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

In the vector of output arguments, the output argument names are by conven-

tion separated by commas.

Choosing New, then Function brings up a template in the Editor that can then

be filled in. If this is not desired, it may be easier to start with New Script.

For example, here is a function that calculates two values, both the area and the
circumference of a circle; this is stored in a file called areacirc.m:

areacirc.m

function [area, circum]=areacirc(rad)
% areacirc returns the area and
% the circumference of a circle
% Format: areacirc(radius)

area=pi * rad .* rad;
circum=2 * pi * rad;
end

Because this function is calculating two values, there are two output arguments

in the function header (area and circum), which are placed in square brackets [].
Therefore, somewhere in the body of the function, values have to be stored

in both.

Because the function is returning two values, it is important to capture and store

these values in separate variables when the function is called. In this case, the
first value returned, the area of the circle, is stored in a variable a and the second

value returned is stored in a variable c:

>> [a, c]=areacirc(4)
a =

50.2655
c =

25.1327

If this is not done, only the first value returned is retained, in this case, the area:

>> disp(areacirc(4))
50.2655

Note

that in capturing the

values the order matters.

In this example, the

function first returns the

area and then the cir-

cumference of the circle.

The order in which values

are assigned to the out-

put arguments within the

function, however, does

not matter.

QUICK QUESTION!

What would happen if a vector of radii was passed to the

function?

Answer: As the .* operator is used in the function tomultiply

rad by itself, a vector can be passed to the input argument rad.

Therefore, the results will also be vectors, so the variables on

the left side of the assignment operator would become vectors

of areas and circumferences.

>> [a, c]=areacirc(1:4)

a =

3.1416 12.5664 28.2743 50.2655

c =

6.2832 12.5664 18.8496 25.1327

2056.1 More Types of User-Defined Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The help function shows the comment listed under the function header:

>> help areacirc
This function calculates the area and
the circumference of a circle
Format: areacirc(radius)

The areacirc function could be called from the CommandWindow, as has been

shown, or from a script. Here is a script that will prompt the user for the radius
of just one circle, call the areacirc function to calculate and return the area and

circumference of the circle, and print the results:

calcareacirc.m

% This script prompts the user for the radius of a circle,
% calls a function to calculate and return both the area
% and the circumference, and prints the results
% It ignores units and error-checking for simplicity

radius=input('Please enter the radius of the circle: ');
[area, circ]=areacirc(radius);
fprintf('For a circle with a radius of %.1f,\n', radius)
fprintf('the area is %.1f and the circumference is %.1f\n',...

area, circ)

>> calcareacirc
Please enter the radius of the circle: 5.2
For a circle with a radius of 5.2,
the area is 84.9 and the circumference is 32.7

PRACTICE 6.1

Write a function perimarea that calculates and returns the perimeter and area of a rectangle. Pass

the length and width of the rectangle as input arguments. For example, this function might be

called from the following script:

QUICK QUESTION!

What if you want only the second value that is returned?

Answer: Function outputs can be ignored using the tilde:

>> [�, c]=areacirc(1:4)
c =

6.2832 12.5664 18.8496 25.1327

206 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

calcareaperim.m

% Prompt the user for the length and width of a rectangle,
% call a function to calculate and return the perimeter
% and area, and print the result
% For simplicity it ignores units and error-checking

length=input('Please enter the length of the rectangle: ');
width=input('Please enter the width of the rectangle: ');
[perim, area]=perimarea(length, width);
fprintf('For a rectangle with a length of %.1f and a', length)
fprintf(' width of %.1f,\nthe perimeter is %.1f,', width, perim)
fprintf(' and the area is %.1f\n', area)

As another example, consider a function that calculates and returns three out-

put arguments. The function receives one input argument representing a total
number of seconds and returns the number of hours, minutes, and remaining

seconds that it represents. For example, 7515 total seconds is 2 hours,

5 minutes, and 15 seconds because 7515¼3600*2+60*5+15.

The algorithm is as follows.

n Divide the total seconds by 3600, which is the number of seconds in an

hour. For example, 7515/3600 is 2.0875. The integer part is the number
of hours (e.g., 2).

n The remainder of the total seconds divided by 3600 is the remaining

number of seconds; it is useful to store this in a local variable.
n The number of minutes is the remaining number of seconds divided by

60 (again, the integer part).

n The number of seconds is the remainder of the previous division.

breaktime.m

function [hours, minutes, secs]=breaktime(totseconds)
% breaktime breaks a total number of seconds into
% hours, minutes, and remaining seconds
% Format: breaktime(totalSeconds)

hours=floor(totseconds/3600);
remsecs=rem(totseconds, 3600);
minutes=floor(remsecs/60);
secs=rem(remsecs,60);
end

2076.1 More Types of User-Defined Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

An example of calling this function is:

>> [h, m, s] = breaktime(7515)
h =

2
m =

5
s =

15

As before, it is important to store all values that the function returns by using
three separate variables on the left of the assignment.

6.1.2 Functions That Accomplish a Task Without
Returning Values

Many functions do not calculate values but rather accomplish a task, such as
printing formatted output. Because these functions do not return any values,

there are no output arguments in the function header.

The general form of a function definition for a function that does not return any

values looks like this:

functionname.m

function functionname(input arguments)
% Comment describing the function

Statements here
end

For example, the following function just prints the two arguments, numbers,

passed to it in a sentence format:

printem.m

function printem(a,b)
% printem prints two numbers in a sentence format
% Format: printem(num1, num2)

fprintf('The first number is %.1f and the second is %.1f\n',a,b)
end

As this function performs no calculations, there are no output arguments in the
function header and no assignment operator (¼). An example of a call to the

printem function is:

>> printem(3.3, 2)
The first number is 3.3 and the second is 2.0

Note

what is missing in the

function header: there

are no output arguments

and no assignment

operator.

208 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Note that, because the function does not return a value, it cannot be called from

an assignment statement. Any attempt to do this would result in an error, such
as the following:

>> x=printem(3, 5) % Error!!
Error using printem
Too many output arguments.

We can therefore think of the call to a function that does not return values as a
statement by itself, in that the function call cannot be imbedded in another

statement such as an assignment statement or a statement that prints.

The tasks that are accomplished by functions that do not return any values (e.g.,

output from an fprintf statement or a plot) are sometimes referred to as side
effects. Some standards for commenting functions include putting the side

effects in the block comment.

PRACTICE 6.2

Write a function that receives a vector as an input argument and prints the individual elements

from the vector in a sentence format.

>> printvecelems([5.9 33 11])
Element 1 is 5.9
Element 2 is 33.0
Element 3 is 11.0

6.1.3 Functions That Return Values Versus Printing

A function that calculates and returns values (through the output arguments)
does not normally also print them; that is left to the calling script or function.

It is good programming practice to separate these tasks.

If a function just prints a value, rather than returning it, the value cannot be

used later in other calculations. For example, here is a function that just prints
the circumference of a circle:

calccircum1.m

function calccircum1(radius)
% calccircum1 displays the circumference of a circle
% but does not return the value
% Format: calccircum1(radius)

disp(2*pi*radius)
end

2096.1 More Types of User-Defined Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Calling this function prints the circumference, but there is no way to store the

value so that it can be used in subsequent calculations:

>> calccircum1(3.3)
20.7345

Because no value is returned by the function, attempting to store the value in a
variable would be an error:

>> c=calccircum1(3.3)
Error using calccircum1
Too many output arguments.

By contrast, the following function calculates and returns the circumference so

that it can be stored and used in other calculations. For example, if the circle is
the base of a cylinder, and we wish to calculate the surface area of the cylinder,

we would need to multiply the result from the calccircum2 function by the

height of the cylinder.

calccircum2.m

function circle_circum=calccircum2(radius)
% calccircum2 calculates and returns the
% circumference of a circle
% Format: calccircum2(radius)

circle_circum=2*pi*radius;
end

>> circumference=calccircum2(3.3)
circumference=

20.7345

>> height=4;
>> surf_area=circumference*height
surf_area=

82.9380

One possible exception to this rule of not printing when returning is to have a

function return a value if possible but throw an error if not.

6.1.4 Passing Arguments to Functions

In all function examples presented thus far, at least one argument was passed in
the function call to be the value(s) of the corresponding input argument(s) in

the function header. The call-by-value method is the term for this method of

passing the values of the arguments to the input arguments in the functions.

In some cases, however, it is not necessary to pass any arguments to the
function. Consider, for example, a function that simply prints a random real

number with two decimal places:

210 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

printrand.m

function printrand()
% printrand prints one random number
% Format: printrand or printrand()

fprintf('The random # is %.2f\n',rand)
end

Here is an example of calling this function:

>> printrand()
The random # is 0.94

As nothing is passed to the function, there are no arguments in the parentheses
in the function call and none in the function header, either. The parentheses are

not even needed in either the function or the function call. The following works

as well:

printrandnp.m

function printrandnp
% printrandnp prints one random number
% Format: printrandnp or printrandnp()

fprintf('The random # is %.2f\n',rand)
end

>> printrandnp
The random # is 0.52

In fact, the function can be called with or without empty parentheses, whether
or not there are empty parentheses in the function header.

This was an example of a function that did not receive any input arguments, nor
did it return any output arguments; it simply accomplished a task.

The following is another example of a function that does not receive any input

arguments, but, in this case, it does return a value. The function prompts the

user for a string (meaning, actually, a character vector) and returns the value
entered.

stringprompt.m

function outstr=stringprompt
% stringprompt prompts for a string and returns it
% Format stringprompt or stringprompt()

disp('When prompted, enter a string of any length.')
outstr=input('Enter the string here: ', 's');
end

2116.1 More Types of User-Defined Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> mystring=stringprompt
When prompted, enter a string of any length.
Enter the string here: Hi there

mystring=
'Hi there'

PRACTICE 6.3

Write a function that will prompt the user for a string of at least one character, loop to error-check

to make sure that the string has at least one character, and return it as a character vector.

6.2 MATLAB PROGRAM ORGANIZATION

Typically, a MATLAB program consists of a script that calls functions to do the

actual work.

6.2.1 Modular Programs

A modular program is a program in which the solution is broken down into

modules, and each is implemented as a function. The script that calls these

functions is typically called the main program.

QUICK QUESTION!

It is important that the number of arguments passed in the

call to a function must be the same as the number of input

arguments in the function header, even if that number is zero.

Also, if a function returns more than one value, it is important

to “capture” all values by having an equivalent number of vari-

ables in a vector on the left side of an assignment statement.

Although it is not an error if there are not enough variables,

some of the values returned will be lost. The following ques-

tion is posed to highlight this.

Given the following function header (note that this is just the

function header, not the entire function definition):

function [outa, outb]=qq1(x, y, z)

Which of the following proposed calls to this function would be

valid?

a) [var1, var2]=qq1(a, b, c);

b) answer=qq1(3, y, q);

c) [a, b]=myfun(x, y, z);

d) [outa, outb]=qq1(x, z);

Answer: The first proposed function call, (a), is valid. There

are three arguments that are passed to the three input argu-

ments in the function header, the name of the function is qq1,

and there are two variables in the assignment statement to

store the two values returned from the function. Function call

(b) is valid, although only the first value returned from the

function would be stored in answer; the second value would

be lost. Function call (c) is invalid because the name of the

function is given incorrectly. Function call (d) is invalid

because only two arguments are passed to the function, but

there are three input arguments in the function header.

212 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

To demonstrate the concept, we will use the very simple example of calculating

the area of a circle. In Section 6.3, a much longer example will be given. For this
example, there are three steps in the algorithm to calculate the area of a circle:

n Get the input (the radius)

n Calculate the area
n Display the results

In a modular program, there would be one main script (or, possibly a function

instead) that calls three separate functions to accomplish these tasks:

n A function to prompt the user and read in the radius
n A function to calculate and return the area of the circle

n A function to display the results

Assuming that each is stored in a separate code file, there would be four separate
code files altogether for this program; one script file and three function code

files, as follows:

calcandprintarea.m

% This is the main script to calculate the
% area of a circle
% It calls 3 functions to accomplish this
radius=readradius;
area=calcarea(radius);
printarea(radius,area)

readradius.m

function radius=readradius
% readradius prompts the user and reads the radius
% Ignores error-checking for now for simplicity
% Format: readradius or readradius()

disp('When prompted, please enter the radius in inches.')
radius=input('Enter the radius: ');
end

calcarea.m

function area=calcarea(rad)
% calcarea returns the area of a circle
% Format: calcarea(radius)

area=pi*rad .* rad;
end

2136.2 MATLAB Program Organization

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

printarea.m

function printarea(rad,area)
% printarea prints the radius and area
% Format: printarea(radius, area)

fprintf('For a circle with a radius of %.2f inches,\n',rad)
fprintf('the area is %.2f inches squared.\n',area)
end

When the program is executed, the following steps will take place:

n the script calcandprintarea begins executing

n calcandprintarea calls the readradius function

n readradius executes and returns the radius
n calcandprintarea resumes executing and calls the calcarea function, passing

the radius to it

n calcarea executes and returns the area
n calcandprintarea resumes executing and calls the printarea function,

passing both the radius and the area to it

n printarea executes and prints
n the script finishes executing

Running the program would be accomplished by typing the name of the script;

this would call the other functions:

>> calcandprintarea
When prompted, please enter the radius in inches.
Enter the radius: 5.3
For a circle with a radius of 5.30 inches,
the area is 88.25 inches squared.

Note how the function calls and the function headers match up. For example:

readradius function:

function call: radius=readradius;
function header: function radius=readradius

In the readradius function call, no arguments are passed so there are no input
arguments in the function header. The function returns one output argument

so that is stored in one variable.

calcarea function:

function call: area=calcarea(radius);
function header: function area=calcarea(rad)

In the calcarea function call, one argument is passed in parentheses so there is
one input argument in the function header. The function returns one output

argument so that is stored in one variable.

214 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

printarea function:

function call: printarea(radius,area)
function header: function printarea(rad,area)

In the printarea function call, there are two arguments passed, so there are two
input arguments in the function header. The function does not return anything,

so the call to the function is a statement by itself; it is not in an assignment or

output statement.

PRACTICE 6.4

Modify the readradius function to error-check the user’s input tomake sure that the radius is valid.

The function should ensure that the radius is a positive number by looping to print an error mes-

sage until the user enters a valid radius.

6.2.2 Local Functions

Thus far, every function has been stored in a separate code file. However, it is
possible to have more than one function in a given file. For example, if one

function calls another, the first (calling) function would be the main function

and the function that is called is a local function, or sometimes a subfunction.

These functions would both be stored in the same code file, first the main func-

tion and then the local function. The name of the code file would be the same as
the name of the main function, to avoid confusion.

To demonstrate this, a program that is similar to the previous one, but calcu-

lates and prints the area of a rectangle, is shown here. The script first calls a func-

tion that reads the length and width of the rectangle, and then calls a function
to print the results. This function calls a local function to calculate the area.

rectarea.m

% This program calculates & prints the area of a rectangle

% Call a fn to prompt the user & read the length and width
[length, width]=readlenwid;
% Call a fn to calculate and print the area
printrectarea(length, width)

readlenwid.m

function [l,w]=readlenwid
% readlenwid reads & returns the length and width
% Format: readlenwid or readlenwid()

l = input('Please enter the length: ');
w = input('Please enter the width: ');
end

2156.2 MATLAB Program Organization

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

printrectarea.m

function printrectarea(len, wid)
% printrectarea prints the rectangle area
% Format: printrectarea(length, width)

% Call a local function to calculate the area
area = calcrectarea(len,wid);
fprintf('For a rectangle with a length of %.2f\n',len)
fprintf('and a width of %.2f, the area is %.2f\n', ...

wid, area);

end

function area=calcrectarea(len, wid)
% calcrectarea returns the rectangle area
% Format: calcrectarea(length, width)
area = len * wid;
end

An example of running this program follows:

>> rectarea
Please enter the length: 6
Please enter the width: 3
For a rectangle with a length of 6.00
and a width of 3.00, the area is 18.00

Note how the function calls and function headers match up. For example:

readlenwid function:

function call: [length, width]=readlenwid;
function header: function [l,w]=readlenwid

In the readlenwid function call, no arguments are passed so there are no input
arguments in the function header. The function returns two output arguments

so there is a vector with two variables on the left side of the assignment state-

ment in which the function is called.

printrectarea function:

function call: printrectarea(length, width)
function header: function printrectarea(len, wid)

In the printrectarea function call, there are two arguments passed, so there are

two input arguments in the function header. The function does not return any-

thing, so the call to the function is a statement by itself; it is not in an assign-
ment or output statement.

calcrectarea local function:

function call: area=calcrectarea(len,wid);
function header: function area=calcrectarea(len, wid)

216 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

In the calcrectarea function call, two arguments are passed in parentheses so

there are two input arguments in the function header. The function returns
one output argument so that is stored in one variable.

The help command can be usedwith the script rectarea, the function readlenwid,

and with themain function, printrectarea. To view the first comment in the local

function, as it is contained within the printrectarea.m file, the operator > is used
to specify both the main and local functions:

>> help rectarea
This program calculates & prints the area of a rectangle

>> help printrectarea
printrectarea prints the rectangle area
Format: printrectarea(length, width)

>> help printrectarea>calcrectarea
calcrectarea returns the rectangle area
Format: calcrectarea(length, width)

So, local functions can be in script code files, and also in function code files.

PRACTICE 6.5

For a right triangle with sides a, b, and c, where c is the hypotenuse and θ is the angle between

sides a and c, the lengths of sides a and b are given by:

a =c*cos(θ)
b =c*sin(θ)

Write a script righttri that calls a function to prompt the user and read in values for the hypotenuse

and the angle (in radians), and then calls a function to calculate and return the lengths of sides a

and b, and a function to print out all values in a sentence format. For simplicity, ignore units. Here

is an example of running the script; the output format should be exactly as shown here:

>> righttri
Enter the hypotenuse: 5
Enter the angle: .7854
For a right triangle with hypotenuse 5.0
and an angle 0.79 between side a & the hypotenuse,
side a is 3.54 and side b is 3.54

For extra practice, do this using two different program organizations:

n One script that calls three separate functions, each stored in separate code files

n One script that calls two functions; the function that calculates the lengths of the sides will be

a local function to the function that prints

2176.2 MATLAB Program Organization

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

6.3 APPLICATION: MENU-DRIVEN MODULAR PROGRAM

Many longer, more involved programs that interact with the user are menu-

driven, which means that the program prints a menu of choices and then con-
tinues to loop to print the menu of choices until the user chooses to end the

program. A modular menu-driven program would typically have a function

that presents the menu and gets the user’s choice, as well as functions to imple-
ment the action for each choice. These functions may have local functions.

Also, the functions would error-check all user input.

As an example of such a menu-driven program, we will write a program to
explore the constant e.

The constant e, called the natural exponential base, is used extensively in math-
ematics and engineering. There are many diverse applications of this constant.

The value of the constant e is approximately 2.7183… Raising e to the power of

x, or ex, is so common that this is called the exponential function. In MATLAB,
as we have seen, there is a function for this, exp.

One way to determine the value of e is by finding a limit.

e¼ lim
n!∞

1 +
1

n

� �n

As the value of n increases toward infinity, the result of this expression

approaches the value of e.

An approximation for the exponential function can be found using what is
called a Maclaurin series:

ex � 1+
x1

1!
+
x2

2!
+
x3

3!
+…

We will write a program to investigate the value of e and the exponential func-

tion. It will be menu-driven. The menu options will be:

n Print an explanation of e.

n Prompt the user for a value of n and then find an approximate value for e
using the expression (1+1/n)n.

n Prompt the user for a value for x. Print the value of exp(x) using the built-

in function. Find an approximate value for ex using the Maclaurin series
just given.

n Exit the program.

The algorithm for the script main program follows:

n Call a function eoption to display the menu and return the user’s choice.

n Loop until the user chooses to exit the program. If the user has not chosen

to exit, the action of the loop is to:

218 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n Depending on the user’s choice, do one of the following:

- Call a function explaine to print an explanation of e.

- Call a function limite that will prompt the user for n and calculate an
approximate value for e

- Prompt the user for x and call a function expfn that will print both an
approximate value for ex and the value of the built-in exp(x). Note

that because any value for x is acceptable, the program does not

need to error-check this value.
n Call the function eoption to display the menu and return the user’s

choice again.

The algorithm for the eoption function follows:

n Display the four choices.

n Error-check by looping to display the menu until the user chooses one of
the four options.

n Return the integer value corresponding to the choice.

The algorithm for the explaine function is:

n Print an explanation of e, the exp function, and how to find approximate

values.

The algorithm for the limite function is:

n Call a local function askforn to prompt the user for an integer n.

n Calculate and print the approximate value of e using n.

The algorithm for the local function askforn is:

n Prompt the user for a positive integer for n.

n Loop to print an error message and reprompt until the user enters a

positive integer.
n Return the positive integer n.

The algorithm for the expfn function is:

n Receive the value of x as an input argument.
n Print the value of exp(x).

n Assign an arbitrary value for the number of terms n (an alternative

method would be to prompt the user for this).
n Call a local function appex to find an approximate value of exp(x) using a

series with n terms.

n Print this approximate value.

The algorithm for the local function appex is:

n Receive x and n as input arguments.

n Initialize a variable for the running sum of the terms in the series (to 1 for
the first term) and for a running product that will be the factorials in the

denominators.

2196.3 Application: Menu-Driven Modular Program

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n Loop to add the n terms to the running sum.

n Return the resulting sum.

The entire program consists of the following script file and four function code

files:

eapplication.m

% This script explores e and the exponential function

% Call a function to display a menu and get a choice
choice=eoption;

% Choice 4 is to exit the program
while choice �= 4

switch choice
case 1

% Explain e
explaine;

case 2
% Approximate e using a limit
limite;

case 3
% Approximate exp(x) and compare to exp
x=input('Please enter a value for x: ');
expfn(x);

end
% Display menu again and get user's choice
choice=eoption;

end

eoption.m

function choice=eoption
% eoption prints a menu of options and error-checks
% until the user chooses one of the options
% Format: eoption or eoption()

printchoices
choice=input('');
while �any(choice==1:4)

disp('Error - please choose one of the options.')
printchoices
choice=input('');

end
end

function printchoices
fprintf('Please choose an option:\n\n');
fprintf('1) Explanation\n')
fprintf('2) Limit\n')
fprintf('3) Exponential function\n')
fprintf('4) Exit program\n\n')
end

220 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

explaine.m

function explaine
% explaine explains a little bit about e
% Format: explaine or explaine()

fprintf('The constant e is called the natural')
fprintf(' exponential base.\n')
fprintf('It is used extensively in mathematics and')
fprintf(' engineering.\n')
fprintf('The value of the constant e is � 2.7183\n')
fprintf('Raising e to the power of x is so common that')
fprintf(' this is called the exponential function.\n')
fprintf('An approximation for e is found using a limit.\n')
fprintf('An approximation for the exponential function')
fprintf(' can be found using a series.\n')
end

limite.m

function limite
% limite returns an approximate of e using a limit
% Format: limite or limite()

% Call a local function to prompt user for n
n = askforn;
fprintf('An approximation of e with n=%d is %.2f\n', ...

n, (1+1/n) ^ n)
end

function outn=askforn
% askforn prompts the user for n
% Format askforn or askforn()
% It error-checks to make sure n is a positive integer

inputnum=input('Enter a positive integer for n: ');
num2=int32(inputnum);
while num2 �= inputnum jj num2 < 0

inputnum=input('Invalid! Enter a positive integer: ');
num2=int32(inputnum);

end
outn=inputnum;
end

2216.3 Application: Menu-Driven Modular Program

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

expfn.m

function expfn(x)
% expfn compares the built-in function exp(x)
% and a series approximation and prints
% Format expfn(x)

fprintf('Value of built-in exp(x) is %.2f\n',exp(x))

% n is arbitrary number of terms
n = 10;
fprintf('Approximate exp(x) is %.2f\n', appex(x,n))
end

function outval=appex(x,n)
% appex approximates e to the x power using terms up to
% x to the nth power
% Format appex(x,n)

% Initialize the running sum in the output argument
% outval to 1 (for the first term)
outval=1;

for i=1:n
outval=outval+(x^i)/factorial(i);

end
end

Running the script will bring up the menu of options.

>> eapplication
Please choose an option:

1) Explanation
2) Limit
3) Exponential function
4) Exit program

Then, what happens will depend on which option(s) the user chooses. Every

time the user chooses, the appropriate function will be called and then this

menuwill appear again. This will continue until the user chooses 4 for ‘Exit Pro-
gram’. Examples will be given of running the script, with different sequences of

choices.

In the following example, the user

n Chose 1 for ‘Explanation’.

n Chose 4 for ‘Exit Program’.

>> eapplication
Please choose an option:

222 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

1) Explanation
2) Limit
3) Exponential function
4) Exit program

1
The constant e is called the natural exponential base.
It is used extensively in mathematics and engineering.
The value of the constant e is � 2.7183
Raising e to the power of x is so common that this is called the
exponential function.
An approximation for e is found using a limit.
An approximation for the exponential function can be found using a
series.
Please choose an option:

1) Explanation
2) Limit
3) Exponential function
4) Exit program

4

In the following example, the user

n Chose 2 for ‘Limit’.
n When prompted for n, entered two invalid values before finally

entering a valid positive integer.

n Chose 4 for ‘Exit Program’.

>> eapplication
Please choose an option:

1) Explanation
2) Limit
3) Exponential function
4) Exit program

2
Enter a positive integer for n:–4
Invalid! Enter a positive integer: 5.5
Invalid! Enter a positive integer: 10
An approximation of e with n=10 is 2.59
Please choose an option:

1) Explanation
2) Limit
3) Exponential function
4) Exit program

4

To see the difference in the approximate value for e as n increases, the user kept

choosing 2 for ‘Limit’, and entering larger and larger values each time in the
following example (the menu is not shown for simplicity):

2236.3 Application: Menu-Driven Modular Program

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> eapplication
Enter a positive integer for n: 4
An approximation of e with n=4 is 2.44
Enter a positive integer for n: 10
An approximation of e with n=10 is 2.59
Enter a positive integer for n: 30
An approximation of e with n=30 is 2.67
Enter a positive integer for n: 100
An approximation of e with n=100 is 2.70

In the following example, the user

n Chose 3 for ‘Exponential function’.

n When prompted, entered 4.6 for x.

n Chose 3 for ‘Exponential function’ again.
n When prompted, entered�2.3 for x.

n Chose 4 for ‘Exit Program’.

Again, for simplicity, the menu options and choices are not shown.

>> eapplication
Please enter a value for x: 4.6
Value of built-in exp(x) is 99.48
Approximate exp(x) is 98.71
Please enter a value for x:–2.3
Value of built-in exp(x) is 0.10
Approximate exp(x) is 0.10

6.4 VARIABLE SCOPE

The scope of any variable is the workspace in which it is valid. The workspace

created in the Command Window is called the base workspace.

Aswehave seen before, if a variable is defined in any function it is a local variable
to that function, which means that it is only known and used within that func-

tion. Local variables only exist while the function is executing; they cease to exist

when the function stops executing. For example, in the following function that
calculates the sum of the elements in a vector, there is a local loop variable i.

mysum.m

function runsum=mysum(vec)
% mysum returns the sum of a vector
% Format: mysum(vector)

runsum=0;
for i=1:length(vec)

runsum=runsum+vec(i);
end
end

224 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Running this function does not add any variables to the base workspace, as

demonstrated in the following:

>> clear
>> who
>> disp(mysum([5 9 1]))

15
>> who
>>

In addition, variables that are defined in the Command Window cannot be
used in a function (unless passed as arguments to the function).

However, scripts (as opposed to functions) do interact with the variables that

are defined in the Command Window. For example, the previous function is

changed to be a script mysumscript.

mysumscript.m

% This script sums a vector
vec=1:5;
runsum=0;
for i=1:length(vec)

runsum=runsum+vec(i);
end
disp(runsum)

The variables defined in the script do become part of the base workspace:

>> clear
>> who
>> mysumscript

15
>> who
Your variables are:
i runsum vec

Because variables created in scripts and in the CommandWindow both use the

base workspace, many programmers begin scripts with a clearvars command to
eliminate variables that may have already been created elsewhere (either in the

Command Window or in another script).

Instead of a program consisting of a script that calls other functions to do the
work, in some cases programmers will write a main function to call the other

functions. Therefore, the program consists of all functions rather than one

script and the rest functions. The reason for this is again because both scripts
and the Command Window use the base workspace. By using only functions

in a program, no variables are added to the base workspace.

It is possible, inMATLAB as well in other languages, to have global variables that

can be shared by functions without passing them. Although there are some

2256.4 Variable Scope

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

cases in which using global variables is efficient, it is generally regarded as poor

programming style and therefore will not be explained further here.

6.4.1 Persistent Variables

Normally, when a function stops executing, the local variables from that func-

tion are cleared. That means that every time a function is called, memory is allo-
cated and used while the function is executing but released when it ends. With

variables that are declared as persistent variables, however, the value is not

cleared so the next time the function is called, the variable still exists and retains
its former value.

The following program demonstrates this. The script calls a function func1,

which initializes a variable counter to 0, increments it, and then prints the value.

Every time this function is called, the variable is created, initialized to 0, chan-
ged to 1, and then cleared when the function exits. The script then calls a func-

tion func2, which first declares a persistent variable counter. If the variable has

not yet been initialized, which will be the case the first time the function is
called, it is initialized to 0. Then, like the first function, the variable is incremen-

ted and the value is printed. With the second function, however, the variable

remains with its value when the function exits, so the next time the function
is called the variable is incremented again.

persistex.m

% This script demonstrates persistent variables

% The first function has a variable "counter"
fprintf('This is what happens with a "normal" variable:\n')
func1
func1

% The second function has a persistent variable "counter"
fprintf('\nThis is what happens with a persistent variable:\n')
func2
func2

func1.m

function func1
% func1 increments a normal variable "counter"
% Format func1 or func1()

counter=0;
counter=counter+1;
fprintf('The value of counter is %d\n',counter)
end

226 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

func2.m

function func2
% func2 increments a persistent variable "counter"
% Format func2 or func2()

persistent counter % Declare the variable

if isempty(counter)
counter=0;

end
counter=counter+1;
fprintf('The value of counter is %d\n',counter)
end

The line

persistent counter

declares the variable counter, which allocates space for it but does not initialize
it. The if statement then initializes it (the first time the function is called). In

many languages, variables always have to be declared before they can be used;

in MATLAB, this is true only for persistent variables.

The functions can be called from the script or from the Command Window, as
shown. For example, the functions are called first from the script. With the per-

sistent variable, the value of counter is incremented. Then, func1 is called from

the Command Window and func2 is also called from the Command Window.
As the value of the persistent variable had the value 2, this time it is incremen-

ted to 3.

>> persistex
This is what happens with a "normal" variable:
The value of counter is 1
The value of counter is 1

This is what happens with a persistent variable:
The value of counter is 1
The value of counter is 2

>> func1
The value of counter is 1

>> func2
The value of counter is 3

As can be seen from this, every time the function func1 is called, whether from
persistex or from the Command Window, the value of 1 is printed. However,

with func2, the variable counter is incremented every time it is called. It is first

called in this example from persistex twice, so counter is 1 and then 2. Then,
when called from the CommandWindow, it is incremented to 3 (so it is count-

ing how many times the function is called).

2276.4 Variable Scope

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Theway to restart apersistent variable is touse the clear function. The command

>> clear functions

will restart all persistent variables (see doc clear for more options). It is also

possible to clear an individual function rather than all of them, for example,

>> clear func2

PRACTICE 6.6

The following function posnum prompts the user to enter a positive number and loops to error-

check. It returns the positive number entered by the user. It calls a local function in the loop to

print an error message. The local function has a persistent variable to count the number of times

an error has occurred. Here is an example of calling the function:

>> enteredvalue=posnum
Enter a positive number:–5
Error # 1 ... Follow instructions!
Does–5.00 look like a positive number to you?
Enter a positive number:–33
Error # 2 ... Follow instructions!
Does–33.00 look like a positive number to you?
Enter a positive number: 6
enteredvalue=

6

Fill in the local function below to accomplish this.

posnum.m

function num=posnum
% Prompt user and error-check until the
% user enters a positive number
% Format posnum or posnum()

num=input('Enter a positive number: ');
while num < 0

errorsubfn(num)
num=input('Enter a positive number: ');

end
end

function errorsubfn(num)
% Fill this in

end

Of course, the numbering of the error messages will continue if the function is executed again

without clearing it first.

228 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

6.5 DEBUGGING TECHNIQUES

Any error in a computer program is called a bug. This term is thought to date

back to the 1940s, when a problem with an early computer was found to have
been caused by amoth in the computer’s circuitry! The process of finding errors

in a program, and correcting them, is still called debugging.

As we have seen, the checkcode function can be used to help find mistakes or
potential problems in script and function files.

6.5.1 Types of Errors

There are several different kinds of errors that can occur in a program, which fall

into the categories of syntax errors, runtime errors, and logical errors.

Syntax errors are mistakes in using the language. Examples of syntax errors are
missing a comma or a quotation mark, or misspelling a word. MATLAB itself

will flag syntax errors and give an error message. For example, the following

character vector is missing the end quote:

>> mystr= 'how are you;
mystr= 'how are you;

"
Error: Character vector is not terminated properly.

If this type of error is typed in a script or function using the Editor, the Editor

will flag it.

Another common mistake is to spell a variable name incorrectly; MATLAB will

also catch this error. MATLAB will typically be able to correct this for you, as in

the following:

>> value=5;
>> newvalue=valu+3;
Unrecognized function or variable 'valu'.

Did you mean:
>> newvalue=value+3;

Runtime, or execution-time, errors are found when a script or function is execut-

ing. Withmost languages, an example of a runtime error would be attempting to

divide by zero. However, in MATLAB, this will return the constant Inf. Another
examplewouldbeattempting to refer to an element in anarray that doesnot exist.

runtimeEx.m

% This script shows an execution-time error

vec=3:5;

for i=1:4
disp(vec(i))

end

2296.5 Debugging Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The previous script initializes a vector with three elements but then attempts to

refer to a fourth. Running it prints the three elements in the vector, and then an
error message is generated when it attempts to refer to the fourth element.

>> runtimeEx
3
4
5

Index exceeds the number of array elements (3).
Error in runtimeEx (line 6)

disp(vec(i))

Logical errors are more difficult to locate because they do not result in any error

message. A logical error is a mistake in reasoning by the programmer, but it is
not a mistake in the programming language. An example of a logical error

would be dividing by 2.54 instead of multiplying to convert inches to centime-

ters. The results printed or returned would be incorrect, but this might not be
obvious.

All programs should be robust and should wherever possible anticipate poten-

tial errors, and guard against them. For example, whenever there is input into a
program, the program should error-check andmake sure that the input is in the

correct range of values. Also, before dividing, any denominator should be

checked to make sure that it is not zero. In Chapter 10, we will see that it is
possible to validate function arguments, meaning making sure that they are

the correct dimensions, types, and so forth.

Despite the best precautions, there are bound to be errors in programs.

6.5.2 Tracing

Many times, when a program has loops and/or selection statements and is not
running properly, it is useful in the debugging process to know exactly which

statements have been executed. For example, the following is a function that

attempts to display “In middle of range” if the argument passed to it is in
the range from 3 to 6, and “Out of range” otherwise.

testifelse.m

function testifelse(x)
% testifelse will test the debugger
% Format: testifelse(Number)

if 3 < x < 6
disp('In middle of range')

else
disp('Out of range')

end
end

Note

that MATLAB explains the

error, and it gives the line

number in the script in

which the error occurred.

230 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

However, it seems to print “In middle of range” for all values of x:

>> testifelse(4)
In middle of range

>> testifelse(7)
In middle of range

>> testifelse(-2)
In middle of range

One way of following the flow of the function, or tracing it, is to use the echo
function. The echo function, which is a toggle, will display every statement as it

is executed as well as results from the code. For scripts, just echo can be typed,

but for functions, the name of the function must be specified. For example, the
general form is

echo functionname on/off

For the testifelse function, it can be called as:

>> echo testifelse on
>> testifelse(-2)
function testifelse(x)
% testifelse will test the debugger
% Format: testifelse(Number)

if 3 < x < 6
disp('In middle of range')

In middle of range
end
end

We can see from this result that the action of the if clause was executed.

6.5.3 Editor/Debugger

MATLAB has many useful functions for debugging, and debugging can also be

done through its Editor, which is more properly called the Editor/Debugger.

Typing doc debug at the prompt in the Command Window will show some of

the debugging functions. Also, in the Help Documentation, typing
“debugging” in the Search Documentation will display basic information

about the debugging processes.

It can be seen in the previous example that the action of the if clause was exe-

cuted and it printed “In middle of range”, but just from that it cannot be deter-
mined why this happened. There are several ways to set breakpoints in a file

(script or function) so that the variables or expressions can be examined. These

can be done from the Editor/Debugger or commands can be typed from the
Command Window. For example, the following dbstop command will set a

breakpoint in the sixth line of this function (which is the action of the if clause),

which allows the values of variables and/or expressions to be examined at that
point in the execution. The function dbcont can be used to continue the exe-

cution, and dbquit can be used to quit the debug mode.

2316.5 Debugging Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> dbstop testifelse 6
>> testifelse(-2)
6 disp('In middle of range')
K>> x
x =

–2

K>> 3 < x
ans =

0

K>> 3 < x < 6
ans =

1

K>> dbcont
disp('In middle of range')

In middle of range
end
end
>>

By typing the expressions 3 < x and then 3 < x < 6, we can determine that the

expression 3 < x will return either 0 or 1. Both 0 and 1 are less than 6, so the
expression will always be true, regardless of the value of x! Once in the debug

mode, instead of using dbcont to continue the execution, dbstep can be used to

step through the rest of the code one line at a time. Also, in debug mode, hov-
ering over a variable in the Editor will show the value of the variable.

Breakpoints can also be set and cleared through the Editor. When a file is open

in the Editor, in between the line numbers on the left and the lines of code is a

thin gray strip which is the breakpoint alley. In this, there are underscore marks
next to the executable lines of code (as opposed to comments, for example).

Clicking the mouse in the alley next to a line will create a breakpoint at that

line (and then clicking on the red dot that indicates a breakpoint will clear
it). This can be seen in Fig. 6.1.

PRACTICE 6.7

The following script is bad code in several ways. Use checkcode first to check it for potential prob-

lems, and then use the techniques described in this section to set breakpoints and check values of

variables.

debugthis.m

for i = 1:5
i = 3;
disp(i)

end

for j=2:4
vec(j)=j

end

Note

that the prompt becomes

K>> in debug mode.

232 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

6.5.4 Function Stubs

Another common debugging technique that is used when there is a script main

program that calls many functions is to use function stubs. A function stub is a
place holder, used so that the script will work even though that particular func-

tion has not been written yet. For example, a programmer might start with a

script main program which consists of calls to three functions that accomplish
all of the tasks.

mainscript.m

% This program gets values for x and y, and
% calculates and prints z

[x, y]=getvals;
z = calcz(x,y);
printall(x,y,z)

The three functions have not yet been written, however, so function stubs are

put in place so that the script can be executed and tested. The function stubs

consist of the proper function headers, followed by a simulation of what the
function will eventually do. For example, the first two functions put arbitrary

values in for the output arguments, and the last function prints.

getvals.m

function [x, y] = getvals
x = 33;
y = 11;
end

FIGURE 6.1

Breakpoint alley.

2336.5 Debugging Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

calcz.m

function z = calcz(x,y)
z = x+y;
end

printall.m

function printall(x,y,z)
disp(x)
disp(y)
disp(z)
end

Then, the functions can be written and debugged one at a time. It is much easier

to write a working program using this method than to attempt to write every-
thing at once. Then, when errors occur, it is not always easy to determine where

the problem is!

6.6 TASKS IN LIVE SCRIPTS, CODE CELLS,
AND PUBLISHING CODE

6.6.1 Tasks in Live Scripts

In Chapter 3, we saw how to create simple live scripts using the Live Editor,

which can contain text, equations, images, code, and the code results. It is also
possible to embed controls in live scripts, such as sliders, drop down menus,

check boxes, edit fields, and push buttons. There are also tasks that can be used

to auto-generate code. There are quite a few tasks for preprocessing data sets,
and also a plotting task. Depending on which toolboxes you have, there

may be tasks associated with those toolboxes, also.

As an example, we will create a live script that plots sin(x), using a slider for the
maximum value of x. The following steps were taken, once in the Live Editor.

n Click on Text and write a sentence description of the script.
n Click on Section Break.

n Write code for the minimum and maximum possible values of x, and run

that section.
n Click on Section Break.

n Start an assignment statement “maxval¼” and then click on Control, and

then Numeric Slider. This brings up a box that allows you to choose a
label for the slider (the default is the variable name), and values for the

minimum,maximum, and steps for the slider. There are defaults listed for

each of those, and workspace variables can also be chosen. This is seen in
Fig. 6.2. What was chosen here were the variablesminofx andmaxofx, and

0.1 for the step.

234 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n Add assignments for x and y variables to that section and run it.

n Click on Section Break.
n Click on Task, and then Create Plot. This brings up a task that allows you

to choose the type of plot, and variables for x and y. This is seen in

Fig. 6.3.

FIGURE 6.2

Choosing slider values.

2356.6 Tasks in Live Scripts, Code Cells, and Publishing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n Choose plot, and the x and y variable. Run this section and then collapse

the task by clicking on the down arrow to the left of it. This brings up the

plot as seen in Fig. 6.4 (which was put inline).

6.6.2 Code Cells and Publishing

With simple code file scripts, one can break the code into sections, called code

cells. With code cells, you can run one cell at a time and you can also publish the

code in an HTML format with plots embedded and with formatted equations.

FIGURE 6.3

Create plot task.

236 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

To break code into cells, create comment lines that begin with two % symbols;

these become the cell titles. For example, a script from Chapter 3 that plots sin
and cos has been modified to have two cells: one that creates vectors for

sin(x) and cos(x) and plots them, and a second that adds a legend, title, and

axis labels to the plot.

FIGURE 6.4

Result from plot task.

2376.6 Tasks in Live Scripts, Code Cells, and Publishing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

sinncosCells.m

% This script plots sin(x) and cos(x) in the same Figure
% Window for values of x ranging from 0 to 2pi

%% Create vectors and plot
clf
x = 0: 2*pi/40: 2*pi;
y = sin(x);
plot(x,y)
hold on
y = cos(x);
plot(x,y)
axis padded

%% Add legends, axis labels, and title
legend('sin', 'cos')
xlabel('x')
ylabel('sin(x) or cos(x)')
title('sin and cos on one graph')

When viewing this script in the Editor, the individual cells can be chosen by
clicking the mouse anywhere within the cell. This will highlight the cell with

a background color. Then, from the Editor tab, you can choose “Run Section”

to run just that one code cell and remain within that cell, or you can choose
“Run and Advance” to run that code cell and then advance to the next.

By choosing the “Publish” tab and then “Publish”, the code is published by

default in HTML document. For the sinncosCells script, this creates a document
in which there is a table of contents (consisting of the two cell titles), the first

code block which plots, followed by the actual plot, and then the second code

block that annotates the Figure Window, followed by the modified plot.

Data Science and Machine Learning Supplement
Splitting Data Sets Into Training and Test Sets
As we have seen in Chapter 5, labeled data sets for classification models are fre-
quently randomized, and then broken into training and test sets. A basic algo-

rithm for this might include:

n Get and clean data
n Randomize and split data

n Train and test model

238 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

What follows is a script that calls functions to accomplish each of these tasks.

The data will be represented by a matrix named dataset.

dataset = getandclean;
[traindata, testdata] = splitdata(dataset);
trainandtest(traindata, testdata);

Function stubs have been written for the getandclean and trainandtest functions:

function outdata = getandclean
outdata = randi([1, 100], 10, 4);
end

function trainandtest(traind, testd)
disp(traind)
disp('Test')
disp(testd)
end

The splitdata functionwill first randomize the rows in the original datasetmatrix,
and then split the data into training and testing sets, using an 80/20 split.

function [traind, testd]=splitdata(dataset)
[r c] = size(dataset);
dataset = dataset(randperm(r), :);
numtrain = floor(.8*r);
traind = dataset(1:numtrain, :);
testd = dataset(numtrain+1:end, :);
end

Clustering and Hyperparameter Tuning
Figure 6.5 shows a scatterplot of some data points. It can clearly be seen by the

naked eye that there are two distinct clusters of points. It is certainly not always

this straight-forward, but clustering is a technique that is used in both super-
vised and unsupervised algorithms.

Mathematically, one technique for deciding in which cluster a point falls is by
calculating the distance between points. There are several different ways to cal-

culate the distance.

The Euclidean distance between two points (x1, y1) and (x2, y2) is given by:

E¼
ffi
x1� x2ð Þ2 + x2� y2ð Þ2

q

The Manhattan distance is

M¼ abs x1�x2ð Þ+ abs y1�y2ð Þ

TheManhattan distance between points is used in someML algorithms because

it is faster and easier to calculate than the Euclidean distance.

2396.6 Tasks in Live Scripts, Code Cells, and Publishing Code

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

When working with ML models, parameters such as which distance metric to

use are called hyperparameters. Hyperparameters can be modified. Therefore,
for example, it would be possible to test the model using Euclidean distance,

get the assessment results, and then run it again using Manhattan distance,

and compare the results before deciding which distance metric to use. This is
called hyperparameter tuning.

n Explore Other Interesting Features

From the Command Window, type help debug to find out more about the

debugging, and help dbstop in particular to find out more options for
stopping code. Breakpoints can be set at specified locations in a file, only

when certain condition(s) apply, and when errors occur.

Investigate the dbstatus function.

Explore the use of the functions mlock and munlock to block functions
from being cleared using clear.

As of R2017a, it is possible to interactively edit figures in the Live Editor.

Create Live script with a plot. Click on the plot, zoom in, and click on the
“Update Code” button to modify the x and y limits.

It is also possible to create code cells in functions. Investigate this. n

1 2 3 4 5 6 7
1

2

3

4

5

6

7

8

9

FIGURE 6.5

Scatter plot.

240 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

SUMMARY

COMMON PITFALLS

n Not matching up arguments in a function call with the input arguments

in a function header.

n Not having enough variables in an assignment statement to store all of
the values returned by a function through the output arguments.

n Attempting to call a function that does not return a value from an

assignment statement, or from an output statement.
n Not using the same name for the function and the file in which it is

stored.

n Not thoroughly testing functions for all possible inputs and outputs.
n Forgetting that persistent variables are updated every time the function in

which they are declared is called – whether from a script or from the

Command Window.

PROGRAMMING STYLE GUIDELINES

n If a function is calculating one or more values, return these value(s) from

the function by assigning them to output variable(s).

n Give the function and the file in which it is stored the same name.
n Function headers and function calls must correspond. The number of

arguments passed to a function must be the same as the number of input

arguments in the function header. If the function returns values, the
number of variables in the left side of an assignment statement should

match the number of output arguments returned by the function.

n If arguments are passed to a function in the function call, do not replace
these values by using input in the function itself.

n Functions that calculate and return value(s) will not normally also

print them.
n Functions should not normally be longer than one page in length.

n Do not declare variables in the CommandWindow and then use them in

a script, or vice versa.
n Pass all values to be used in functions to input arguments in the

functions.

n When writing large programs with many functions, start with the main
program script and use function stubs, filling in one function at a time

while debugging.

241Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

MATLAB Reserved Words

global persistent

MATLAB Functions and Commands

echo
dbstop
dbcont

dbquit
dbstep

MATLAB Operator

> path for local function %% code cell title

Exercises

1. Write a function that will receive as an input argument a number of kilometers

(K). The function will convert the kilometers to miles and to U.S. nautical miles,

and return both results. The conversions are: 1K¼0.621 miles and 1 US

nautical mile¼1.852K.

2. Write a function that receives an input argument x and returns y and z, which

should be calculated as follows:

y = 2x2

z = 3x – 4y

3. Write a function ret2 that will return two random integers, the first in the range

from 0 to 10 (inclusive) and the second in the range from 50 to 100 (inclusive).

4. Write a function splitem that will receive one vector of numbers as an input

argument, and will return two vectors: one with the positive (>¼0) numbers

from the original vector, and the second, the negative numbers from the

original vector. Use vectorized code (no loops) in your function.

5. Given the following function header:

function doit(a, b)

Which of the following function calls would be valid – and why?

fprintf('The result is %.1f\n', doit(4,11))

doit(5, 2, 11.11)

x=11;
y=3.3;
doit(x,y)

6. Write a function that receives an input argument and returns its length and first

element.

242 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

7. Write a function promptletnum that will prompt the user for one letter and an

integer in the range from 1 to 5 (inclusive), error-checking until the user enters

valid values, and then return them. The function will convert upper case letters

to lower case.

8. Write a function “ps” that will receive one input argument, and will print the

dimensions of the input argument in a sentence format.

9. Write a function that will receive an integer n and a character as input

arguments, and will print the character n times.

10. Write a function that receives a matrix as an input argument, and prints a

random column from the matrix.

11. Write a function that receivesa count asan input argument andprints the valueof

the count in a sentence that would read “It happened 1 time.” if the value of the

counter is 1, or “It happenedxx times.” if the valueof counter (xx) is greater than 1.

12. Write a function that receives an x vector, a minimum value, and a maximum

value, and plots sin(x) from the specified minimum to the specified maximum.

13. Write a function that prompts the user for a value of an integer n, and returns

the value of n. No input arguments are passed to this function. Error-check to

make sure that an integer is entered.

14. Write a script that will:

n Call a function to prompt the user for an angle in degrees

n Call a function to calculate and return the angle in radians. (Note: π
radians¼180°)

n Call a function to print the result
Write all of the functions, also. Put the script and all functions in separate code

files.

15. Modify the program in Exercise 14 so that the function to calculate the angle is

a local function to the function that prints.

16. Some Machine Learning algorithms are trained on data sets that have known

outcomes. If Yobs is a vector of observed data values, and Ypred is a vector of

predicted data values, the error vector is Yobs – Ypred, and the Mean Squared

Error is defined as the mean of the squares of the errors, or:

MSE¼mean Yobs�Ypredð Þ ^ 2ð Þ

A script:

n calls a function to get Yobs and Ypred

n calls a function to calculate and return the error vector and the MSE

n calls a function to print the MSE
The script and a stub for the first function are given here. Write the other two

functions, in separate code files.

[yobs, ypred]=getvecs;
[errorvec, mse]=findmse(yobs, ypred);
printmse(mse)

243Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

function [yobs, ypred]=getvecs
yobs=3:7;
ypred=[2.8 4 5.1 5.9 7.3];
end

17. The lump sum S to be paid when interest on a loan is compounded annually is

given by S¼P(1+ i)n where P is the principal invested, i is the interest rate, and n

is the number of years. Write a program that will plot the amount S as it

increases through the years from 1 to n. The main script will call a function to

prompt the user for the number of years (and error-check tomake sure that the

user enters a positive integer). The script will then call a function that will plot

S for years 1 through n. It will use 0.05 for the interest rate and $10,000 for P.

18. The distance between any two points (x1,y1) and (x2,y2) is given by:

distance¼
ffi
x1� x2ð Þ2 + y1� y2ð Þ2

q

The area of a triangle is:

area¼
ffi
s∗ s�að Þ∗ s�bð Þ∗ s�cð Þ

q

where a, b, and c are the lengths of the sides of the triangle, and s is equal to

half the sum of the lengths of the three sides of the triangle. Write a script that

will prompt the user to enter the coordinates of three points that determine a

triangle (e.g., the x and y coordinates of each point). The script will then

calculate and print the area of the triangle. It will call one function to calculate

the area of the triangle. This function will call a local function that calculates

the length of the side formed by any two points (the distance between them).

19. Write a program to write a temperature conversion chart to a file. The main

script will:

n call a function that explains what the program will do

n call a function to prompt the user for the minimum and maximum

temperatures in degrees Fahrenheit, and return both values. This function

checks to make sure that the minimum is less than the maximum, and calls

a local function to swap the values if not.

n call a function to write temperatures to a file: the temperature in degrees

F from the minimum to the maximum in one column and the corresponding

temperature in degrees Celsius in another column. The conversion is

C¼ (F – 32)*5/9.
20. Modify the function func2 from Section 6.4.1 that has a persistent variable

counter. Instead of having the function print the value of counter, the value

should be returned.

244 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

21. Assume a matrix variable mat, as in the following example:

mat=

4 2 4 3 2
1 3 1 0 5
2 4 4 0 2

The following for loop

[r, c] = size(mat);
for i = 1:r

sumprint(mat(i,:))
end

prints this result:

The sum is now 15
The sum is now 25
The sum is now 37

Write the function sumprint.

22. Assume that you have the following function:

function outarg = mystfun(inarg)
persistent loc
loc=[loc inarg];
outarg=loc;
end

Explain why an if statement with isempty is not necessary.

23. The percentage change (for example, of a salary) is defined as the (new – old)/

old*100. Write a script that will

n prompt the user for the user’s previous salary and new salary

n call a function to calculate and return the percentage change

n print the resulting percentage increase if it was an increase, or a sympathy

message if not
Also, write the function that calculates and returns the percentage change.

Note: to print one percent sign (%), put two in a row (%%) in the format

specifier.

24. Write a menu-driven program to convert a time in seconds to other units

(minutes, hours, and so on). The main script will loop to continue until the

user chooses to exit. Each time in the loop, the script will generate a random

time in seconds, call a function to present a menu of options, and print the

converted time. The conversions must be made by individual functions (e.g.,

one to convert from seconds to minutes). All user-entries must be

error-checked.

25. Write a menu-driven program to investigate the constant π. Model it after the

program that explores the constant e. Pi (π) is the ratio of a circle’s

circumference to its diameter. Many mathematicians have found ways to

approximate π. For example, Machin’s formula is:

π

4

� �
¼ 4 arctan

1

5

� �
� arctan

1

239

� �

245Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Leibniz found that π can be approximated by:

π¼ 4

1
�4

3
+
4

5
�4

7
+
4

9
� 4

11
+…

This is called a sum of a series. There are six terms shown in this series. The

first term is 4, the second term is –4/3, the third term is 4/5, and so forth. For

example, the menu-driven program might have the following options:

n Print the result from Machin’s formula.

n Print the approximation using Leibniz’ formula, allowing the user to specify

how many terms to use.

n Print the approximation using Leibniz’ formula, looping until a “good”

approximation is found.

n Exit the program.

26. Write a program to calculate the position of a projectile at a given time t. For an

initial velocity v0 and angle of departure θ0, the position is given by x and y

coordinates as follows (note: the gravity constant g is 9.81m/s2):

x¼ v0 cos θ0ð Þt

y¼ v0 sin θ0ð Þt�1

2
gt2

The program should initialize the variables for the initial velocity, time, and

angle of departure. It should then call a function to find the x and y coordinates,

and then another function to print the results.

27. Write the program for Problem 26 as a Live Script. Plot the results.

28. Create a live script. In the script, create x and y vectors and use the Plot Data

task to create a scatter plot.

Data Science and Machine Learning

29. Machine Learning algorithms predict outcomes. In some cases, the outcome is

basically yes/no which is expressed as positive/negative; for example, is the

email spam (positive) or not (negative)? The algorithmmay or may not correctly

make this prediction. There are four numbers that are used when training aML

algorithm on a data set: true positives, true negatives, false positives, and false

negatives. For a Machine Learning Algorithm, the Precision is:

Precision¼ true positives= true positives + false positivesð Þ

Write a program that will

n call a function to prompt the user for the number of true positives and false

positives

246 CHAPTER 6: MATLAB Programs

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n call a function to calculate and return the precision

n call a function to print the results
Write the script and all functions.

30. To find the equation of the straight line y¼mx+b that best fits some data points

using a least squares regression, the equations for m and b are:

m¼ n
X

xiyi�
X

xi
X

yi

n
X

x2i �
X

xi
� �2

b¼ y�mx

where n is the number of points in the data vectors x and y, and y and x

represent the means of the vectors y and x. Write a function mylinfit that

implements this; it receives the two data vectors x and y, and returns the values

ofm and b. Assume that the two vectors are the same length, and use the built-

in mean function to find the mean of a vector.

This might be called from a script that calls one function to read the data

vectors from a file, calls themylinfit function to get the best straight line fit, and

then calls a third function to plot the points and the line. The script has been

written, and function stubs have been written, as follows:

[x, y]=getpoints;
[m, b]=mylinfit(x,y);
ploteverything(x,y,m,b)

function [x, y]=getpoints
x=1:5;
y=2:6;
end

function ploteverything(x,y,m,b)
plot(x(1)*y(1), m*b, 'k*')
end

31. Write a function that will receive the x and y coordinates of two points, and will

return the Euclidean distance between them and also the Manhattan distance.

247Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This page intentionally left blank

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

CHAPTER 7

Text Manipulation

KEY TERMS

character vectors

string arrays

control characters

white space characters

string scalars

substring

leading blanks

trailing blanks

delimiter

token

Text can be represented in the MATLAB® software using character vectors, or

using string arrays, which were introduced in R2016b.

MATLAB hasmany built-in functions that are written specifically to manipulate

strings and character vectors. Many functions that were created to manipulate

character vectors also work on the new string type. Additionally, when string
was introduced, many new string-manipulating functions were introduced. In

some cases, strings contain numbers, and it is useful to convert from strings to

numbers and vice versa; MATLAB has functions to do this as well.

There are many applications for text data, even in fields that are predominantly

numerical. For example, when data files consist of combinations of numbers
and characters, it is often necessary to read each line from the file as a string,

break the string into pieces, and convert the parts that contain numbers to num-

ber variables that can be used in computations. In this chapter, the string
manipulation techniques necessary for this will be introduced, and applica-

tions in file input/output will be demonstrated in Chapter 9.

7.1 CHARACTERS, CHARACTER VECTORS,
AND STRING ARRAYS

Individual characters are stored in single quotation marks, are displayed using
single quotes, and are the type char. Characters include letters of the alphabet,

digits, punctuation marks, white space, and control characters. Control

CONTENTS

7.1 Characters,
Character
Vectors, and
String
Arrays249

7.2 Operations on
Text 252

7.3 The “is”
Functions for
Text 266

7.4 Converting
Between Text
and Number
Types 267

Summary 271

Common
Pitfalls271

Programming Style
Guidelines271

MATLAB. https://doi.org/10.1016/B978-0-323-91750-6.00007-X

249

Copyright © 2023 Elsevier Inc. All rights reserved.

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

characters are characters that cannot be printed, but accomplish a task (e.g., a

backspace or tab).White space characters include the space, tab, newline (which
moves the cursor down to the next line), and carriage return (which moves the

cursor to the beginning of the current line).

>> letter= 'x'
letter=

'x'
>> class(letter)
ans=

'char'
>> size(letter)
ans=

1 1

The function newline returns a newline character:

>> var=newline
var=

'
'

Groups of characters, such as words, can be stored in character vectors or in

string scalars. Prior to R2016b, the word “string” was used when referring to
character vectors. However, as a result of the new string type, in MATLAB there

is now a distinction between character vectors and strings.

A character vector consists of any number of characters (including, possibly,

none), is contained in and displayed using single quotes, and has the type char.
These are all examples of character vectors:

' '
' '
'x'
'cat'
'Hello there'
'123'

Character vectors are vectors in which every element is a single character, which

means that many of the vector operations and functions that we have already
seen work with these character vectors.

>> myword= 'Hello';
>> class(myword)
ans=

'char'
>> size(myword)
ans=

1 5
>> length(myword)
ans=

5
>> myword' % Note transpose

250 CHAPTER 7: Text Manipulation

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

ans=
5�1 char array

'H'
'e'
'l'
'l'
'o'

>> myword(1)
ans=

'H'

A string scalar can also be used to store a group of characters such as words.
String scalars (whichmeans a single string) can be created using the string func-

tion or using double quotes. String scalars are displayed using double quotes.

>> mystr="Awesome"
mystr=

"Awesome"
>> mystr=string('Awesome')
mystr=

"Awesome"
>> class(mystr)
ans=

'string'
>> size(mystr)
ans=

1 1

Since this is a string scalar, the length of the string is 1. To find the number of
characters in a string scalar, the strlength function is used:

>> strlength(mystr)
ans=

7

Because this is a scalar, the first element is the string itself. Using parentheses to

index will show this. However, using curly braces to index will return the char-
acter vector that is contained in the string scalar; this can be used to extract indi-

vidual characters.

>> mystr(1)
ans=

"Awesome"
>> mystr{1}
ans=

'Awesome'
>> mystr{1}(2)
ans=

'w'

Groups of strings can be stored in string arrays or character matrices (or, as we

will see in Chapter 8, cell arrays).

Note

that since a string is a

scalar, the dimensions

are 1 x 1.

2517.1 Characters, Character Vectors, and String Arrays

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

String arrays are the preferred method for storing groups of strings. As with

other arrays, string arrays can be created using square brackets. The following
creates a row vector of strings.

>> majors=["English", "History", "Engineering"]
majors=

1�3 string array
"English" "History" "Engineering"

>> class(majors)
ans=

'string'
>> majors(1)
ans=

"English"
>> majors{1}
ans=

'English'

The char function can be used to create an array of character vectors, for

example,

>> majmat=char('English', 'History', 'Engineering')
majmat=

3�11 char array
'English '
'History '
'Engineering'

This is a matrix of characters, which appears as a column vector of strings. It is
really amatrix in which every element is a single character. Because every row in

amatrixmust have the same number of columns, this means that shorter words

are padded with extra blank spaces so that they all have the same length. This is
one reason that this is not a preferred method for storing groups of strings.

There are several terms that can be used for either strings or character vectors.

A substring is a subset or part of a string. For example, “there” is a substring
within the string “Hello there”. Leading blanks are blank spaces at the beginning

of a string, for example, “ hello”, and trailing blanks are blank spaces at the end

of a string.

7.2 OPERATIONS ON TEXT

MATLAB has many built-in functions that work with strings and character vec-
tors. Most of these functions, including those that were present in earlier ver-

sions and the new functions introduced with the string type, can operate on

either strings or character vectors. A few work with either strings or character
vectors, but not both. Some of the text manipulation functions that perform

the most common operations will be described here.

252 CHAPTER 7: Text Manipulation

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

7.2.1 Operations on Character Vectors

Character vectors are created using single quotes, as we have seen. The input
function is another method of creating a character vector:

>> phrase=input('Enter something: ', 's')
Enter something: hello there
phrase=

'hello there'

Another function that creates only character vectors is the blanks function,
which creates a character vector consisting of n blank characters.

>> b=blanks(4)
b=

' '

Displaying the transpose of the result from the blanks function can also be used

to move the cursor down. In the Command Window, it would look like this:

>> disp(blanks(4)')

>>

Another example is to insert blank spaces into a character vector:

>> ['Space' blanks(10) 'Cowboy']
ans=

'Space Cowboy'

PRACTICE 7.1

Prompt the user for a character vector. Print the length of the character vector and also its first

and last characters. Make sure that this works regardless of what the user enters.

7.2.2 Operations on Strings

String scalars and string arrays can be created using double quotes, as we have
seen. The string function is anothermethod of creating a string from a character

vector, as we have seen.

Without any arguments, the string function creates a string scalar that contains

no characters. However, since it is a scalar, it is not technically empty. The
strlength function should be used to determine whether a string contains

any characters, not the isempty function.

>> es=string
es=

""
>> isempty(es)
ans=

0

2537.2 Operations on Text

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> strlength(es) == 0
ans=

1

The plus function or operator can join, or concatenate, two strings together:

>> "hello"+" goodbye"
ans=

"hello goodbye"

The plus operator cannot be used to concatenate two character vectors. How-

ever, it can concatenate a string and a character vector, resulting in a string.

PRACTICE 7.2

Prompt the user for a character vector. Use the string function to convert it to a string. Print the

length of the string and also its first and last characters. Concatenate “!!” to the end of your string

using the plus operator.

7.2.3 Operations on Strings or Character Vectors

Most text functions can have either strings or character vectors as input argu-

ments. Unless specified otherwise, for text manipulating functions, if the argu-
ment is a character vector, the result will be a character vector, and if the

argument is a string, the result will be a string.

Note that in some explanations the word “string” will be used generically to

mean either a MATLAB string, or a character vector.

7.2.3.1 Creating and Concatenating
We have already seen several methods of creating and concatenating both
strings and character vectors, including the plus function putting them in

square brackets. The append (introduced in R2019a) and strcat functions

can be used to concatenate text horizontally, meaning the result is one longer
piece of text. One difference is that strcat will remove trailing blanks (but not

leading blanks) for character vectors, whereas it will not remove either from

strings. The append function will not remove blanks.

>> strcat('Hello', ' there')
ans=

'Hello there'
>> strcat('Hello ', 'there')
ans=

'Hellothere'
>> strcat('Hello', ' ', 'there')
ans=

'Hellothere'
>> strcat("Hello", " ", "there")
ans=

"Hello there"

254 CHAPTER 7: Text Manipulation

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> append('Hello ', 'there')
ans=

'Hello there'

The sprintf function can be used to create customized strings or character vec-
tors. The sprintf function works exactly like the fprintf function, but instead of

printing it creates a string (or character vector). Here are several examples in

which the output is not suppressed so the value of the resulting variable is
shown:

>> sent1=sprintf('The value of pi is %.2f', pi)
sent1=

'The value of pi is 3.14'

>> sent2=sprintf("Some numbers: %5d, %2d", 33, 6)
sent2=

"Some numbers: 33, 6"

All of the formatting options that can be used in the fprintf function can also be
used in the sprintf function.

One very useful application of the sprintf function is to create customized text,

including formatting and/or numbers that are not known ahead of time (e.g.,

entered by the user or calculated). This customized text can then be passed to
other functions, for example for plot titles or axis labels. For example, assume

that a file “expnoanddata.dat” stores an experiment number, followed by the

experiment data. In this case, the experiment number is “123”, and then the
rest of the file consists of the actual data.

123 4.4 5.6 2.5 7.2 4.6 5.3

The following script would load these data and plot them with a title that

includes the experiment number.

plotexpno.m

% This script loads a file that stores an experiment number
% followed by the actual data. It plots the data and puts
% the experiment # in the plot title

load expnoanddata.dat
experNo=expnoanddata(1);
data=expnoanddata(2:end);
plot(data,'ko')
xlabel('Sample #')
ylabel('Weight')
title(sprintf('Data from experiment %d', experNo))
axis padded

The script loads all numbers from the file into a row vector. It then separates the
vector; it stores the first element, which is the experiment number, in a variable

experNo, and the rest of the vector in a variable data (the rest being from the

Note

Notice that in the first

example the format

specifier used a charac-

ter vector, so the result

was a character vector,

whereas the second

example used a string for

the format specifier so

that the result was a

string.

2557.2 Operations on Text

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

second element to the end). It then plots the data, using sprintf to create the

title, which includes the experiment number as seen in Fig. 7.1.

PRACTICE 7.3

In a loop, create and print strings with file names “file1.dat”, “file2.dat”, and so on for file numbers

1 through 5.

1 2 3 4 5 6
Sample #

W
ei

gh
t

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5
Data from experiment 123

FIGURE 7.1

Customized title in plot using sprintf.

QUICK QUESTION!

How could we use the sprintf function to customize prompts

for the input function?

Answer: For example, if it is desired to have the contents of

a string variable printed in a prompt, sprintf can be used:

>>username=input('Pleaseenteryourname: ', 's');

Please enter your name: Bart

>> prompt=sprintf('%s, Enter your id #: ',⋯
username);

>> id_no=input(prompt)

Bart, Enter your id #: 177

id_no=

177

256 CHAPTER 7: Text Manipulation

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Another way of accomplishing this (in a script or function) would be:

fprintf('%s, Enter your id #: ',username);
id_no=input(' ');

Note that the calls to the sprintf and fprintf functions are identical except that
the fprintf prints (so there is no need for a prompt in the input function),

whereas the sprintf creates a string that can then be displayed by the input func-

tion. In this case, using sprintf seems cleaner than using fprintf and then
having an empty string for the prompt in input.

As another example, the following program prompts the user for endpoints
(x1, y1) and (x2, y2) of a line segment, and calculates the midpoint of the line

segment, which is the point (xm, ym). The coordinates of the midpoint are

found by:

xm ¼ 1

2
x1 + x2ð Þ ym ¼ 1

2
y1 + y2ð Þ

The scriptmidpoint calls a function entercoords to separately prompt the user for

the x and y coordinates of the two endpoints, calls a function findmid twice to
calculate separately the x and y coordinates of the midpoint, and then prints

this midpoint. When the program is executed, the output looks like this:

>> midpoint
Enter the x coord of the first endpoint: 2
Enter the y coord of the first endpoint: 4
Enter the x coord of the second endpoint: 3
Enter the y coord of the second endpoint: 8
The midpoint is (2.5, 6.0)

In this example, the word ‘first’ or ‘second’ is passed to the entercoords function

so that it can use whichever word is passed in the prompt. The prompt is cus-
tomized using sprintf.

midpoint.m

% This program finds the midpoint of a line segment

[x1, y1]=entercoords('first');
[x2, y2]=entercoords('second');

midx=findmid(x1,x2);
midy=findmid(y1,y2);

fprintf('The midpoint is (%.1f, %.1f)\n',midx,midy)

2577.2 Operations on Text

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

entercoords.m

function [xpt, ypt]=entercoords(word)
% entercoords reads in & returns the coordinates of
% the specified endpoint of a line segment
% Format: entercoords(word) where word is 'first'
% or 'second'

prompt=sprintf('Enter the x coord of the %s endpoint: ', ...
word);

xpt=input(prompt);

prompt=sprintf('Enter the y coord of the %s endpoint: ', ...
word);

ypt=input(prompt);
end

findmid.m

function mid=findmid(pt1,pt2)
% findmid calculates a coordinate (x or y) of the
% midpoint of a line segment
% Format: findmid(coord1, coord2)

mid=0.5*(pt1+pt2);
end

7.2.3.2 Removing Characters
MATLAB has functions that will remove trailing and/or leading blanks from
strings and character vectors and also will delete specified characters and

substrings.

The deblank function will remove trailing blank spaces from the end of text

(but it does not remove leading blanks).

>> deblank(" Hello ")
ans=

" Hello"

The strtrim function will remove both leading and trailing blanks from text, but

not blanks in themiddle. In the following example, the three blanks in the begin-
ningand fourblanks in theendare removed,butnot the twoblanks in themiddle.

>> strtrim(" Hello there ")
ans=

"Hello there"
>> strlength(ans)
ans=

12

The strip function can be used to remove leading and/or trailing characters,
either whitespace or other specified characters. One simple method of calling

it follows:

258 CHAPTER 7: Text Manipulation

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> teststr="xxHelloxxxthere!x";
>> strip(teststr, "x")
ans=

"Helloxxxthere!"

The erase function removes all occurrences of a substring within a string (or

character vector).

>> erase(teststr, "x")
ans=

"Hellothere!"

7.2.3.3 Changing Case
MATLAB has two functions that convert text to all uppercase letters, or lower-
case, called upper and lower.

>> mystring="AbCDEfgh";
>> lower(mystring)
ans=

"abcdefgh"
>> upper('Char vec')
ans=

'CHAR VEC'

PRACTICE 7.4

Assume that these expressions are typed sequentially in the Command Window. Think about it,

write downwhat you think the results will be, and then verify your answers by actually typing them.

lnstr= '1234567890';

mystr= ' abc xy';

newstr=strtrim(mystr)

length(newstr)

upper(newstr(1:3))

numstr=sprintf("Number is %4.1f", 3.3)

erase(numstr," ") % Note 2 spaces

7.2.3.4 Comparing text
There are several functions that compare strings or character vectors and return

logical true if they are equivalent, or logical false if not. The function strcmp

compares text, character by character. It returns logical true if the strings (or
character vectors) are completely identical (which infers that they must also

be of the same length), or logical false if they are not the same length or

any corresponding characters are not identical. Note that for character vectors,
these functions are used to determine whether two character vectors are equal

2597.2 Operations on Text

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

to each other or not, not the equality operator ==. Here are some examples of

these comparisons:

>> word1= 'cat';
>> word2= 'car';
>> word3= 'cathedral';
>> word4= 'CAR';
>> strcmp(word1,word3)
ans=

0
>> strcmp(word1,word1)
ans=

1
>> strcmp(word2,word4)
ans=

0

The function strncmp compares only the first n characters in strings and ignores

the rest. The first two arguments are the strings to compare and the third argu-

ment is the number of characters to compare (the value of n).

>> strncmp(word1,word3,3)
ans=

1

The function strcmpi compares the strings but ignores the case of the

characters.

>> strcmpi(word2,word4)
ans=

1

There is also a function strncmpi, which compares n characters, ignoring

the case.

For character vectors, the equality operator will compare character by character,
or it will throw an error message if the vectors are not the same length.

>> 'hello' == 'hello'
ans=

1�5 logical array
1 1 1 1 1

>> 'hello' == 'help'
Arrays have incompatible sizes for this operation.
Related documentation

For strings, however, the equality operator will return simply 1 for true if the
two strings are exactly the same, or 0 for false if not.

>> "hello" == "hello"
ans=

1
>> "hello" == "help"
ans=

0

260 CHAPTER 7: Text Manipulation

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

7.2.3.5 Finding, Replacing, and Separating Text
There are functions that find and replace strings, or parts of strings, within other

strings and functions that separate strings into substrings.

The function strfind receives two strings as input arguments. The general form is
strfind(string, substring); it finds all occurrences of the substring within the

string,andreturns thesubscriptsof thebeginningof theoccurrences.Thesubstring

canconsist ofone character, or anynumberof characters. If there ismore thanone
occurrence of the substring within the string, strfind returns a vector with all

indices. Note that what is returned is the index of the beginning of the substring.

>> strfind('abcde', 'd')
ans=

4
>> strfind("abcde", "bc")
ans=

2
>> strfind('abcdeabcdedd', 'd')
ans=

4 9 11 12

Note that the arguments can be character vectors or strings. If there are no

occurrences, the empty vector is returned.

>> strfind('abcdeabcde','ef')
ans=

[]

The function strrep finds all occurrences of a substring within a string and
replaces them with a new substring. The order of the arguments matters. The

format is

strrep(string, oldsubstring, newsubstring)

The following replaces all occurrences of the substring ‘e’ with the substring ‘x’:

>> strrep('abcdeabcde','e','x')
ans=

'abcdxabcdx'

All strings can be any length, and the lengths of the old and new substrings do
not have to be the same. If the old substring is not found, nothing is changed in

the original string.

The function count counts the number of occurrences of a substring within a

string (or character vector).

>> count('xxhelloxxxhix','x')
ans=

6
>> count("hello everyone", " ")
ans=

1
>> count("hello everyone", "el")
ans=

1

2617.2 Operations on Text

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Note: the empty string (or character vector) is considered a substring within

every string (or character vector). In fact, there is an empty string at the begin-
ning of every string, at the end of every string, and in between every two char-

acters within the string! Therefore, counting the number of empty strings in a

string with n characters results in n+1.

>> count("hello", "")
ans=

6
>> count('abc', ' ')
ans=

4

In addition to the string functions that find and replace, there is a function

that separates a string into two substrings. The strtok function breaks a string

or character vector into two pieces; it can be called several ways. The function
receives one string as an input argument. It looks for the first delimiter,

which is a character or set of characters that act as a separator within the

string.

By default, the delimiter is any white space character. The function returns a
token that is the beginning of the string, up to (but not including) the first

delimiter. It also returns the rest of the string, which includes the delimiter.

Assigning the returned values to a vector of two variables will capture both
of these. The format is

[token, rest]=strtok(string)

where token and rest are variable names. For example,

>> sentence1="Hello there";
>> [word, rest]=strtok(sentence1)
word=

"Hello"
rest=

" there"
>> strlength(word)
ans=

5
>> strlength(rest)
ans=

6

Alternate delimiters can be defined. The format

[token, rest]=strtok(string, delimeters)

returns a token that is the beginning of the string, up to the first character con-
tained within the delimiters string, and also the rest of the string. In the follow-

ing example, the delimiter is the character ‘l’.

Note

that the rest of the string

includes the blank space

delimiter.

262 CHAPTER 7: Text Manipulation

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> [word, rest]=strtok(sentence1,'l')
word=

"He"
rest=

"llo there"

Leading delimiter characters are ignored, whether it is the default white space or

a specified delimiter. For example, the leading blanks are ignored here:

>> [firstpart, lastpart]=strtok(' materials science')
firstpart=

'materials'
lastpart=

' science'

PRACTICE 7.5

Think about what would be returned by the following sequence of expressions and statements,

and then type them into MATLAB to verify your results.

dept="Electrical";

strfind(dept,'e')

strfind(lower(dept),'e')

phone_no= '703-987-1234';

[area_code, rest]=strtok(phone_no,'-')

rest=rest(2:end)

strcmpi('Hi','HI')

QUICK QUESTION!

What do you think strtok returns if the delimiter is not in the

string?

Answer: The first result returned will be the entire input

argument. The second result depends on whether the input

argument is a string or character vector. If it is a string, the

second result will be a string scalar that contains no charac-

ters, whereas if it is a character vector, the result will be an

empty character vector.

>> [first, rest]=strtok("ABCDE")

first=

"ABCDE"

rest=

""

>> [first, rest]=strtok('ABCDE')

first=

'ABCDE'

rest=

0�0 empty char array

2637.2 Operations on Text

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

7.2.4 Operations on String Arrays

So far, we have focusedmostly on individual “strings,” stored in either string sca-
lars or character vectors. In this section, we will see that there are operations and

functions that can be applied to all string scalars that are stored in string arrays.

A string array can be preallocated using the strings function, for example,

>> sa=strings(2,4)
sa=

2�4 string array
"" "" "" ""
"" "" "" ""

Strings could then be stored in the individual elements by indexing into the

array.

QUICK QUESTION!

The function date returns the current date as a character vec-

tor (e.g., ‘10-Dec-2021’). How could we write a function to

return theday,month,andyearasseparateoutputarguments?

Answer: We could use strrep to replace the ‘-’ characters

with blanks and then use strtok with the blank as the default

delimiter to break up the character vector (twice) or, more

simply, we could just use strtok and specify the ‘-’ character

as the delimiter.

separatedate.m

function [todayday, todaymo, todayyr]=separatedate
% separatedate separates the current date into day,
% month, and year
% Format: separatedate or separatedate()

[todayday, rest]=strtok(date,'-');
[todaymo, todayyr]=strtok(rest,'-');
todayyr=todayyr(2:end);
end

As we need to separate the character vector into three parts,

we need to use the strtok function twice. The first time the

character vector is separated into ‘10’ and ‘-Dec-2021’ using

strtok. Then, the second character vector is separated into

‘Dec’ and ‘-2021’ using strtok. (As leading delimiters are

ignored the second ‘-’ is found as the delimiter in ‘-Dec-

2021’.) Finally, we need to remove the ‘-’ from the character

vector ‘-2021’; this can be done by just indexing from the sec-

ond character to the end of the character vector.

An example of calling this function follows:

>> [d, m, y]=separatedate

d=

'10'

m=

'Dec'

y=

'2021'

Note that no input arguments are passed to the separatedate

function; instead, the date function returns the current date

as a character vector. Also, note that all three output argu-

ments are character vectors

264 CHAPTER 7: Text Manipulation

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The lengths of all strings in a string array can be found using the strlength

function.

>> majors=["English", "History", "Engineering"];
>> strlength(majors)
ans=

7 7 11

In fact, many string functions can have a string array as an input argument, and
will return the function of each element in the array. For example, we could

convert all to upper case:

>> upmaj=upper(majors)
upmaj=

"ENGLISH" "HISTORY" "ENGINEERING"

The plus operator can be used to concatenate the same string to all strings, or a

subset of strings determined by indexing, in a string array.

>> "BA in " + majors(1:2)
ans=

"BA in English" "BA in History"

Two string arrays can also be concatenated, as long as they have the same length
(note: this means the same number of elements in the string arrays, not the

lengths of individual strings within them).

>> degrees=["BA" "BA" "BS"];
>> (degrees + " in " + majors)' % Note transpose
ans=

3�1 string array
"BA in English"
"BA in History"
"BS in Engineering"

A function that joins strings together (but not character vectors) is strjoin,
which will concatenate strings in a string array together (putting spaces in

between them); strsplit does the reverse:

>> majlist=strjoin(majors)
majlist=

"English History Engineering"
>> strsplit(majlist)
ans=

1�3 string array
"English" "History" "Engineering"

The function join will concatenate strings in corresponding elements of

columns in a string array, for example:

>> newsa=[degrees; majors]' % Note transpose
newsa=

3�2 string array
"BA" "English"
"BA" "History"
"BS" "Engineering"

2657.2 Operations on Text

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> join(newsa)
ans=

3�1 string array
"BA English"
"BA History"
"BS Engineering"

7.3 THE “IS” FUNCTIONS FOR TEXT

There are several “is” functions for strings and character vectors, which return
logical true or false. The function isletter returns logical true for every charac-

ter in a character vector if the character is a letter of the alphabet or false if not.

The function isspace returns logical true for every character in a character vec-
tor that is a white space character.

>> isletter('EK125')
ans=

1 1 0 0 0

>> isspace('a b')
ans=

0 1 0

The ischar function will return logical true if the vector argument is a character

vector, or logical false if not.

>> vec= 'EK125';
>> ischar(vec)
ans=

1
>> vec=3:5;
>> ischar(vec)
ans=

0
>> ischar("EK125")
ans=

0

The isstring function will return logical true if the vector argument is a string,

or logical false if not.

>> isstring("EK125")
ans=

1
>> isstring('hello')
ans=

0

The isStringScalarwill return logical true if the vector argument is a string sca-

lar (a string array with only one element), or logical false if not.

>> isStringScalar("hello")
ans=

1

266 CHAPTER 7: Text Manipulation

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> isStringScalar(["hello" "hi"])
ans=

0

The isstrprop function determines whether the characters in a string are in a
category specified by a second argument. For example, the following tests to

see whether the characters are alphanumeric; all are except for the dot ‘.’.

>> isstrprop('AB123.4','alphanum')
ans=

1 1 1 1 1 0 1

There are several other true/false functions that do not start with “is”. The con-
tains function will return logical true if a specified substring is within a string

(or character vector), or logical false if not.

>> contains("hello", "ll")
ans=

1
>> contains("hello", "x")
ans=

0
>> majors=["English", "History", "Engineering"];
>> contains(majors, "Eng")
ans=

1�3 logical array
1 0 1

The endsWith and startsWith functions will return logical true if a string ends

with (or starts with, respectively) a specified string, or logical false if not.

>> endsWith("filename.dat", ".dat")
ans=

1
>> startsWith('abcde', 'b')
ans=

0

Recall that every string starts with and ends with the empty string.

>> endsWith("abc", "")
ans=

1

7.4 CONVERTING BETWEEN TEXT AND NUMBER TYPES

MATLAB has several functions that convert numbers to strings or character vec-

tors and vice versa.

To convert numbers to character vectors, MATLAB has the functions int2str for
integers and num2str for real numbers (which also works with integers). The

function int2str would convert, for example the integer 38 to the character vec-

tor ‘38’.

Note

that these are different

from the functions such

as char and double that

convert characters to

ASCII equivalents and

vice versa.

2677.4 Converting Between Text and Number Types

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> num=38;
>> cv1=int2str(num)
cv1=

'38'
>> length(num)
ans=

1
>> length(cv1)
ans=

2
>> vec=2:5;
>> result=int2str(vec)
result=

'2 3 4 5'

The variable num is a scalar that stores one number, whereas cv1 is a character
vector that stores two characters, ‘3’ and ‘8’.

Thenum2str function,which converts real numbers, can be called in severalways.

If only one real number is passed to thenum2str function, it will create a character

vector that has four decimal places, which is the default inMATLAB for displaying
real numbers. The precision can also be specified (which is the number of digits),

and format specifiers can also be passed, as shown in the following:

>> cv2=num2str(3.456789)
cv2=

'3.4568'
>> length(cv2)
ans=

6
>> cv3=num2str(3.456789, 3)
cv3=

'3.46'
>> cv4=num2str(3.456789, '%6.2f')
cv4=

'3.46'

The functions str2double and str2num do the reverse; they take a character

vector in which number(s) are stored and converts them to the type double:

>> num=str2double('123.456')
num=

123.4560

If there is a string in which there are numbers separated by blanks, the str2num

function will convert this to a vector of numbers (of the default type double).
For example,

>> mycv= '66 2 111';
>> numvec=str2num(mycv)
numvec=

66 2 111
>> size(numvec)
ans=

1 3

Note

that in the last example,

MATLAB removed the

leading blanks from the

character vector (from

the field width of 6).

268 CHAPTER 7: Text Manipulation

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Thestr2doublefunctionisabetterfunctiontouseingeneralthanstr2num,butitcan

onlybeusedwhenascalar ispassed; itwouldnotwork, for example, for thevariable
mycv above. If the argument that is passed to str2num is a string or character vector

that contains amath expression, the result of that expression will be evaluated.

>> str2num('5+2')
ans=

7

The str2double and str2num functions perform the same operations on

strings. To convert numbers to strings, the function string can be used.

>> num=38;
>> st1=string(num)
st1=

"38"
>> vec=2:5;
>> starr=string(vec)
starr=

1�4 string array
"2" "3" "4" "5"

PRACTICE 7.6

Think about what would be returned by the following sequence of expressions and statements,

and then type them into MATLAB to verify your results.

vec= 'yes or no';

isspace(vec)

all(isletter(vec)�=isspace(vec))

ischar(vec)

nums=[33 1.5];

num2str(nums)

nv=num2str(nums)

sum(nums)

string([11 33])

Data Science and Machine Learning Supplement

Annotating Plots
In Chapter 5, we saw how to use the subplot function to visualize correlations

between columns in a matrix.

>> mat
mat=

4.0000 2.0000 9.1000 1.0000
4.0000 2.7000 8.0000 2.0000
1.0000 3.1000 8.2000 3.0000

2697.4 Converting Between Text and Number Types

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

9.0000 4.0000 5.9000 4.0000
6.0000 4.5000 5.0000 5.0000
4.0000 5.3000 3.6000 6.0000
8.0000 5.9000 3.3000 7.0000
8.0000 6.4000 3.0000 8.0000
6.0000 7.1000 1.8000 9.0000
3.0000 9.0000 1.1000 10.0000

However, the plots did not have any indicators (labels, title) of which columns
were being compared. Therefore, with text manipulation, we can now improve

on that, as seen in Fig. 7.2.

for i=1:3
subplot(1,3,i)
plot(mat(:,i), mat(:,4), '*')
xlabel(sprintf('Column %d', i))
ylabel('Column 4')
title(sprintf('Column %d vs. Column 4', i))

end
sgtitle('Visualizing Correlations')

Natural Language Processing
Natural language processing involves analyzing text (for example, written
works) and speech (for example, audio files) for patterns in the data. One type

of classification problem is Sentiment Analysis. For example, blog posts might

be examined to determine whether the author had a positive, negative, or neu-
tral reaction to an event. To do this, the text in the blogs would be searched for

0 5 10
Column 1

C
ol

um
n

4

C
ol

um
n

4

C
ol

um
n

4

1

2

3

4

5

6

7

8

9

10
Column 1 vs. Column 4

2 4 6 8
Column 2

1

2

3

4

5

6

7

8

9

10
Column 2 vs. Column 4

0 5 10
Column 3

1

2

3

4

5

6

7

8

9

10
Column 3 vs. Column 4

Visualizing Correlations

FIGURE 7.2

Visualizing correlations.

270 CHAPTER 7: Text Manipulation

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

words that are known to be positive or negative in nature. MATLAB has Text

Analytics Toolbox™ that has many useful functions for accomplishing these
tasks. Although ML with text data is used in a lot of applications, it will not

be covered in depth in this book.

n Explore Other Interesting Features

In many of the search and replace functions, search patterns can be specified
which use regular expressions. Use help to find out about these patterns.

Explore the replace and replaceBetween functions, which find and replace.

Explore the split and splitlines functions, which split text.

Explore the extractAfter, extractBefore, and extractBetween functions,

which extract substrings.

Explore the insertAfter and insertBefore functions, which insert text.

Explore the strjust function, which justifies a string or character vector.

Explore themat2str function, to convert from a matrix to a character vector.

Explore the use of patterns, introduced in 2020b, for searching text.

Explore the use of the matches function, introduced in 2019b.
n

SUMMARY

COMMON PITFALLS

n Putting arguments to strfind in incorrect order.

n Trying to use¼¼ to compare character vectors for equality, instead of the

strcmp function (or its variations)
n Confusing sprintf and fprintf. The syntax is the same, but sprintf creates

a string whereas fprintf prints.

n Trying to create a vector of strings with varying lengths (one way is to use
charwhich will pad with extra blanks automatically; a better way is to use

a string array).

n Forgetting that when using strtok, the second argument returned (the
“rest”) contains the delimiter.

n When breaking a string into pieces, forgetting to convert the numbers in

the strings to actual numbers that can then be used in calculations.

PROGRAMMING STYLE GUIDELINES

n Make sure the correct string comparison function is used, for example
strcmpi if ignoring case is desired.

271Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

MATLAB Functions and Commands

string
newline
strlength
blanks
plus
append
strcat
sprintf
deblank
strtrim

strip
erase
upper
lower
strcmp
strncmp
strcmpi
strncmpi
strfind
strrep

count
strtok
date
strings
strjoin
strsplit
join
isletter
isspace
ischar

isstring
isStringScalar
isstrprop
contains
endsWith
startsWith
int2str
num2str
str2double
str2num

Exercises

1. Write a function getstr that prompts the user for a character vector, error-

checking until the user enters something (the error would occur if the user just

hits the Enter key without characters other than white space characters first).

2. Write a script that will, in a loop, prompt the user for four course numbers.

Each will be a character vector of length 5 of the form ‘CS101’. Convert them to

strings and store in a string array.

3. Write a function that will generate two random integers, each in the inclusive

range from 10 to 30. It will then return a character vector consisting of the two

integers joined together, e.g., if the random integers are 11 and 29, the

character vector that is returned will be ‘1129’.

4. Modify the function from Exercise 3 to return a string instead.

5. Write a script that will create x and y vectors. Then, it will ask the user for a

color (‘red’, ‘blue’, or ‘green’) and for a plot style (circle or star). It will then

create a character vector pstr that contains the color and plot style, so that the

call to the plot function would be: plot(x,y,pstr). For example, if the user enters

‘blue’ and ‘*’, the variable pstr would contain ‘b*’.
6. Consider the following string array:

>> dogs=["golden retriever" "german shepherd" "border collie"];

Using dogs and text manipulation techniques, write expressions that will

create the given variables.

7. Given the variable num:

>> num=33;

Write an assignment statement to create the variable sent as shown here,

using sprintf.

8. Assume that you have the following function and that it has not yet been called.

272 CHAPTER 7: Text Manipulation

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

strfunc.m

function strfunc(instr)
persistent mystr
if isempty(mystr)

mystr= ' ';
end
mystr=strcat(instr,mystr);
fprintf('The string is %s\n',mystr)
end

What would be the result of the following sequential expressions?

strfunc('hi')
strfunc("hello")

Note that the argument can be either a character vector or string.

9. Write a function “faveprompt” that prompts the user for his or her favorite

‘something’ where ‘something’ is a string that is passed to the function. For

example, it might prompt the user for a favorite food, or favorite color. The

function will error-check until the user enters a string (of any length except 0),

and returns that string.

10. Create a string array that contains pet types, e.g.,

pets=["cat" "dog" "gerbil"];

Show the difference in the following methods of indexing into the first two

strings:

pets(1:2)
pets{1:2}
[p1 p2]=pets{1:2}

11. Show the difference between assigning an empty vector to an element in a string

array, by using parentheses and by using curly braces to index into the element.

12. Given the following variables:

>> mystring="No Halloween Parties!!";
>> yourchvec= 'Be Safe!!';

Explain why length(yourchvec) is 9 but length(mystring) is 1. Also, show how you

could index into mystring to get the ‘H’ using just one expression, without using

any functions, and explain your answer.

13. Explainwhy youwoulduse strlength for a string insteadof length. Give examples.

14. Explain in words what the following function accomplishes (not step-by-step,

but what the end result is).

dostr.m

function out=dostr(inp)
persistent str
[w, r]=strtok(inp);
str=strcat(str,w);
out=str;
end

273Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

15. Write a function “createUniqueName” that will create a series of unique

names. When the function is called, a string or character vector is passed as

an input argument. The function adds an integer to the end of the input, and

returns the resulting text. Every time the function is called, the integer that it

adds is incremented. Here are some examples of calling the function:

>> createUniqueName("myvar")
ans=

"myvar1"
>> createUniqueName('filename')
ans=

'filename2'

16. Write a function that will prompt the user separately for a filename and

extension and will create and return a string with the form ‘filename.ext’.

17. Write a function that will receive one input argument, which is an integer n. The

functionwillprompttheuserforanumber intherangefrom1ton (theactualvalue

of n should be printed in the prompt) and return the user’s input. The function

should error-check tomake sure that the user’s input is in the correct range.

18. Write a script that will generate a random integer, ask the user for a field

width, and print the random integer with the specified field width. The script

will use sprintf to create a string such as "The # is%4d\n" (if, for example, the

user entered 4 for the field width) which is then passed to the fprintf function.

To print (or create a string using sprintf) either the % or \ character, there

must be two of them in a row.

19. If the strings (or character vectors) passed to strfind are the same length,

what are the only two possible results that could be returned?

20. Vectorize this for a character vector mystrn:

while mystrn(end)== ' ' % Note one space in quotes
mystrn=mystrn(1:end-1);

end

21. Vectorize this for a character vector sentence:

loc=findstr(sentence, ' ');
where=loc(1);
first=sentence(1:where-1);

last=sentence(where:end);

22. Vectorize this:

vec=[];
for i=1:8

vec=[vec ' ']; % one blank space
end
vec % just for display

23. Write a function nchars that will create a character vector of n characters,

without using any loops or selection statements.

>> nchars('*', 6)
ans=

'*****'

274 CHAPTER 7: Text Manipulation

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

24. Write a function rid_multiple_blanks that will receive a string or character

vector as an input argument. The text input contains a sentence that has

multiple blank spaces in between some of the words. The function will return

the text (as a character vector or a string, depending on what type the input

argument was) with only one blank in between words. For example,

>> mystr= 'Hello and how are you?';
>> rid_multiple_blanks(mystr)
ans=
'Hello and how are you? '

25. Two variables store character vectors that consist of a letter of the alphabet, a

blank space, and a number (in the form ‘R 14.3’). Write a script that would

initialize two such variables. Then, use functions to extract the numbers from

the character vectors and add them together.

26. Load files named file1.dat, file2.dat, and so on in a loop. To test this, create just 2

files with these names in your Current Folder first.

27. Create the following three variables:

>> var1=123;
>> var2= '123';
>> var3="123";

Then, add 1 to each of the variables. Explain the differences.

28. Use help isstrprop to find out what properties can be tested; try some of them

on a string variable.

29. Write a script that will first initialize a character vector variable that will store x

and y coordinates of a point in the form ‘x 3.1 y 6.4’. Then, use text manipulating

functions to extract the coordinates and plot them.

30. Write a function plotstuff that will receive an x vector and a positive integer n. It

will plot, in one Figure Window, sin(1*x), sin(2*x), etc. up to sin(n*x) in a row

using black *’s. Put sin(1x), sin(2x), etc. in the individual plot titles.

31. Investigate the use of the date function. Replace the dashes in the result with

spaces.

32. Investigate the use of the datestr function, for example with datestr(now).

Extract the date and time separately.

Data Science and Machine Learning

33. Create x and y vectors (with the same length), as in:

x=1:10;
y=[2, 2.7, 3.8, 4, 4.5, 5.3, 6.3, 6.4, 7.1, 9];

Plot the vectors with their correlation coefficient in the title.

275Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This page intentionally left blank

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

CHAPTER 8

Data Structures

KEY TERMS

data structures

cell array

structures

fields

database

record

categorical arrays

tables

sorting

cells

content indexing

cell indexing

comma-separated list

dot operator

dynamic field names

vector of structures

nested structure

categorical arrays

ordinal categorical arrays

descending order

ascending order

selection sort

Data structures are variables that store more than one value. For it to make

sense to store more than one value in a variable, the values should somehow
be logically related. There are many different kinds of data structures. We have

already been working with one kind, arrays (e.g., vectors and matrices). An

array is a data structure in which all of the values are logically related in that
they are of the same type and represent, in some sense, “the same thing”. So

far, that has been true for the vectors and matrices that we have used. We
use vectors and matrices when we want to be able to loop through them (or,

essentially, have this done for us using vectorized code).

A cell array is a kind of data structure that stores values of different types. Cell
arrays can be vectors or matrices; the different values are referred to as the ele-

ments of the array. One very common use of a cell array in previous versions of

the MATLAB® software was to store strings of different lengths, although as of
R2016b string arrays are now used for strings of different lengths.

Structures are data structures that group together values that are logically related
but are not the same thing and not necessarily the same type. The different

values are stored in separate fields of the structure.

One use of structures is to set up a database of information. For example, a pro-
fessor might want to store for every student in a class: the student’s name,

CONTENTS

8.1 Cell Arrays .278

8.2 Structures ..282

8.3 Advanced Data
Structures ..295

8.4 Sorting 300

Summary 309

Common
Pitfalls309

Programming Style
Guidelines309

MATLAB. https://doi.org/10.1016/B978-0-323-91750-6.00008-1

277

Copyright © 2023 Elsevier Inc. All rights reserved.

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

university identifier number, grades on all assignments and quizzes, and so

forth. In many programming languages and database programs, the terminol-
ogy is that within a database file there would be one record of information for

each student; each separate piece of information (name, quiz 1 score, and so

on) would be called a field of the record. In MATLAB , these records are called
structures, or structs.

Both cell arrays and structures can be used to store values that are different types
in a single variable. The main difference between them is that cell arrays are

indexed and can therefore be used with loops or vectorized code. Structures,

however, are not indexed; the values are referenced using the names of the
fields, which are more mnemonic than indexing.

Other, more advanced, data structures are also covered in this chapter. These

include categorical arrays and tables. Categorical arrays are a type of array that
allows one to store a finite, countable number of different possible values.

A table is a data structure that stores information in a table format with rows
and columns, each of which can be mnemonically labeled. An advantage of

a table is that information can be extracted using either numeric indexing or

by using row and variable names.

Finally, sorting the various types of data structures will be covered, both pro-

grammatically and using built-in sort functions.

8.1 CELL ARRAYS

A cell array in MATLAB is an array, but, unlike the vectors and matrices we have
used so far, elements in cell arrays are cells that can store different types of values.

8.1.1 Creating Cell Arrays

There are several ways to create cell arrays. For example, we will create a cell

array in which one element will store an integer, one element will store a char-

acter, one element will store a vector, and one element will store a string. Just
like with the arrays we have seen so far, this could be a 1� 4 row vector, a 4� 1

column vector, or a 2 � 2 matrix. Some of the syntax for creating vectors and

matrices is the same as before in that values within rows are separated by spaces
or commas, and rows are separated by semicolons. However, for cell arrays,

curly braces are used rather than square brackets. For example, the following

creates a row vector cell array with four different types of values:

>> cellrowvec={23, 'a', 1:2:9, "hello"}
cellrowvec=

1�4 cell array
{[23]} {'a'} {1�5 double} {["hello"]}

278 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This method creates a 2 � 2 cell array matrix:

>> cellmat={23, 'a'; 1:2:9, "hello"}
cellmat=

2�2 cell array
{[23]} {'a' }
{1�5 double} {["hello"]}

The type of cell arrays is cell.

>> class(cellmat)
ans=

'cell'

Another method of creating a cell array is simply to assign values to specific

array elements and build it up element by element. However, as explained

before, extending an array element by element is a very inefficient and time-
consuming method.

It is much more efficient, if the size is known ahead of time, to preallocate the

array. For cell arrays, this is done with the cell function. For example, to pre-

allocate a variable mycellmat to be a 2 � 2 cell array, the cell function would
be called as follows:

>> mycellmat=cell(2,2)
mycellmat=

2�2 cell array
{0�0 double} {0�0 double}
{0�0 double} {0�0 double}

How to refer to each element to accomplish this will be explained next.

8.1.2 Referring to and Displaying Cell Array Elements
and Attributes

Just like with the other vectors we have seen so far, we can refer to individual ele-

ments of cell arrays. However, with cell arrays, there are two different ways to do

this. The elements in cell arrays are cells. These cells can containdifferent types of
values. With cell arrays, you can refer to the cells, or to the contents of the cells.

Using curly braces for the subscripts will reference the contents of a cell; this is

called content indexing. For example, this refers to the contents of the second

element of the cell array cellrowvec; ans will have the type char:

>> cellrowvec{2}
ans=

'a'

Values can be assigned to cell array elements. For example, after preallocating

the variable mycellmat in the previous section, the elements can be initialized:

>> mycellmat{1,1}=23
mycellmat=

Note

that this is a function call,

so the arguments to the

function are in parenthe-

ses; a matrix is created in

which all of the elements

are empty vectors. Then,

each element can be

replaced by the desired

value.

2798.1 Cell Arrays

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

2�2 cell array
{[23]} {0�0 double}
{0�0 double} {0�0 double}

Using parentheses for the subscripts references the cells; this is called cell index-

ing. For example, this refers to the second cell in the cell array cellrowvec; onec

will be a 1�1 cell array:

>> onec=cellrowvec(2)
onec=

1�1 cell array
{'a'}

>> class(onec)
ans=

'cell'

When an element of a cell array is itself a data structure, only the type of the

element is displayed when the cells are shown. For example, in the previous cell

arrays, the vector is shown just as “1� 5 double” (this is a high-level view of the
cell array). This is what will be displayed with cell indexing; content indexing

would display its contents:

>> cellmat(2,1)
1�1 cell array

{1�5 double}

>> cellmat{2,1}
ans=

1 3 5 7 9

Because this results in a vector, parentheses can be used to refer to its elements.

For example, the fourth element of the vector is:

>> cellmat{2,1}(4)
ans=

7

One can also refer to subsets of cell arrays, such as in the following:

>> cellrowvec{2:3}
ans=

'a'
ans=

1 3 5 7 9

Note, however, that MATLAB stored cellrowvec{2} in the default variable ans,

and then replaced that with the value of cellrowvec{3}. Using content indexing
returns them as a comma-separated list. However, they could be stored in two

separate variables by having a vector of variables on the left side of an

assignment:

>> [c1, c2]=cellrowvec{2:3}
c1=

'a'
c2=

1 3 5 7 9

Note

that the index into the cell

array is given in curly

braces; parentheses are

then used to refer to an

element of the vector.

280 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Using cell indexing, the two cells would be put in a new cell array (in this case,

in ans):

>> cellrowvec(2:3)
ans=

1�2 cell array
{'a' } {1�5 double}

There are several methods for displaying cell arrays. The celldisp function dis-

plays the contents of all elements of the cell array. The function cellplot puts a

graphical display of the cell array into a Figure Window; however, it is a high-
level view and basically just displays the same information as typing the name

of the variable (so, for instance, it would not show the contents of the vector in

the previous example). In other words, it shows the cells, not their contents.

Many of the functions and operations on arrays that we have already seen also

work with cell arrays, such as dimensioning.

8.1.3 Storing Character Vectors in Cell Arrays

One useful application of a cell array is to store character vectors of different

lengths. Because cell arrays can store different types of values, character vectors
of different lengths can be stored in the elements. Prior to R2016b, this was the

preferred method for storing strings of different lengths. Now, however, string

arrays are preferred.

>> cvnames={'Sue', 'Cathy', 'Xavier'}
cvnames=

1�3 cell array
{'Sue'} {'Cathy'} {'Xavier'}

It is possible to convert from a cell array of character vectors to a string array,

and vice versa. MATLAB has several functions that facilitate this. The string

function can convert from a cell array to a string array. The cellstr function will
convert from a string array to a cell array of character vectors.

The function strjoin will concatenate, or join, all strings from a cell array into

one character vector separated by one space each by default (but other delim-
iters can be specified). The function strsplit will essentially do the opposite; it

splits a string into elements in a cell array with either a specified delimiter or a

blank space by default.

The function iscellstr will return logical true if a cell array is a cell array of all

character vectors, or logical false if not.

>> iscellstr(cvnames)
ans=

1

>> iscellstr(cellrowvec)
ans=

0

Note

that the cell indexing

using parentheses and

the content indexing

using curly braces is

analogous to themethods

for indexing into string

arrays. With a string

array, using parentheses

refers to an individual

string scalar, whereas

using curly braces refers

to the character vector

that is stored within the

string.

2818.1 Cell Arrays

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

We will see several examples that utilize cell arrays containing character vectors

of varying lengths in later chapters, including advanced file input functions and
customizing plots.

PRACTICE 8.1

Write an expression that would display a random element from a cell array (without assuming that

the number of elements in the cell array is known). Create two different cell arrays and try the

expression on them to make sure that it is correct.

For more practice, write a function that will receive one cell array as an input argument and will

display a random element from it.

8.2 STRUCTURES

Structures are data structures that group together values that are logically related

in what are called fields of the structure. An advantage of structures is that the

fields are named, which helps to make it clear what values are stored in the
structure. However, structure variables are not arrays. They do not have ele-

ments that are indexed, so it is not possible to loop through the values in a

structure or to use vectorized code.

8.2.1 Creating and Modifying Structure Variables

Creating structure variables can be accomplished by simply storing values in
fields using assignment statements or by using the struct function.

In our first example, assume that the local Computer Super Mart wants to store

information on the software packages that it sells. For each one, they will store
the following:

n item number

n cost to the store

n price to the customer
n character code indicating the type of software

An individual structure variable for a given software package might look like
this:

package

item_no cost price code

123 19.99 39.95 g

The name of the structure variable is package; it has four fields: item_no, cost,

price, and code.

282 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

One way to initialize a structure variable is to use the struct function. The
names of the fields are passed as character vectors (or strings as of R2018b);

each one is followed by the value for that field. So, pairs of field names and

values are passed to struct. These are called name-value pairs.

>> package=struct('item_no',123,'cost',19.99,...
'price',39.95,'code','g')

package=
item_no: 123

cost: 19.9900
price: 39.9500
code: 'g'

As of R2021a, there is a new name5value syntax, which is much easier to read.

>> allpack=struct(item_no=123, cost=19.99,...
price=39.95, code= 'g');

This name¼value syntax can be used for any function that previously accepted

name-value pairs, not just struct.

>> class(package)
ans=

'struct'

MATLAB, as it is written to work with arrays, assumes the array format. Just like
a single number is treated as a 1� 1 double, a single structure is treated as a 1�
1 struct. Later in this chapter we will see how to work more generally with vec-

tors of structs.

The dot operator is used to refer to fields within the structure. The name of the
structure variable is followed by a dot, or period, and then the name of the field

within that structure.

>> package.code
ans=

'g'

Adding a field to a structure later is inefficient but can be done by using an

assignment statement, as in

>> allpack.weight=22
allpack=

struct with fields:

item_no: 123
cost: 19.9900

price: 39.9500
code: 'g'

weight: 22

An entire structure variable can be assigned to another. This would make sense,

for example, if the two structures had some values in common. Here, for

Note

that some programmers

use names that begin

with an uppercase letter

for structure variables

(e.g., Package) to make

them easily

distinguishable.

Note

that in the Workspace

Window, the variable

package is listed as a 1 x 1

struct; the type of the

variable is struct.

2838.2 Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

example, the values from one structure are copied into another and then two

fields are selectively changed, referring to them using the dot operator.

>> newpack=package;
>> newpack.item_no=111;
>> newpack.price=34.95
newpack=

item_no: 111
cost: 19.9900

price: 34.9500
code: 'g'

To print from a structure, the disp function will display either the entire struc-

ture or an individual field.

>> disp(package)
item_no: 123

cost: 19.9900
price: 39.9500
code: 'g'

>> disp(package.cost)
19.9900

However, using fprintf only individual fields can be printed; the entire struc-
ture cannot be printed without referring to all fields individually.

>> fprintf('%d %c\n', package.item_no, package.code)
123 g

The function rmfield removes a field from a structure. It returns a new structure

with the field removed, but does not modify the original structure (unless the

returned structure is assigned to that variable). To change the value of newpack,
the structure that results from calling rmfield must be assigned to newpack.

>> newpack=rmfield(newpack, 'code')
newpack=

item_no: 111
cost: 19.9000

price: 34.9500

PRACTICE 8.2

A silicon wafer manufacturer stores, for every part in its inventory, a part number, quantity in the

factory, and the cost for each.
onepart

part_no quantity costper

123 4 33.95

Create this structure variable using struct. Print the cost in the form $xx.xx.

284 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

8.2.2 Passing Structures to Functions

An entire structure can be passed to a function or individual fields can be
passed. For example, here are two different versions of a function that calculates

the profit on a software package. The profit is defined as the price minus

the cost.

In the first version, the entire structure variable is passed to the function, so the
function must use the dot operator to refer to the price and cost fields of the

input argument.

calcprof.m

function profit=calcprof(packstruct)
% calcprofit calculates the profit for a
% software package
% Format: calcprof(structure w/ price & cost fields)

profit=packstruct.price - packstruct.cost;

end

>> calcprof(package)
ans=
19.9600

In the second version, just the price and cost fields are passed to the function

using the dot operator in the function call. These are passed to two scalar input

arguments in the function header, so there is no reference to a structure var-
iable in the function itself, and the dot operator is not needed in the function.

calcprof2.m

function profit=calcprof2(oneprice, onecost)
% Calculates the profit for a software package
% Format: calcprof2(price, cost)

profit=oneprice - onecost;
end

>> calcprof2(package.price, package.cost)
ans=

19.9600

It is important, as always with functions, to make sure that the arguments in the
function call correspond one-to-one with the input arguments in the function

header. In the case of calcprof, a structure variable is passed to an input argu-

ment, which is a structure. For the second function calcprof2, two individual
numbers (which could be fields from a structure) which are double values,

are passed to two double input arguments.

2858.2 Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

8.2.3 Related Structure Functions

There are several functions that can be usedwith structures inMATLAB. The func-
tion isstruct will return logical 1 for true if the variable argument is a structure

variable or 0 if not. The isfield function returns logical true if a fieldname (as a

character vector or string) is a field in the structure argument or logical false if not.

>> isstruct(package)
ans=

1

>> isfield(package,'cost')
ans=

1

The fieldnames function will return the names of the fields that are contained

in a structure variable.

>> pack_fields=fieldnames(package)
pack_fields=

4�1 cell array
{'item_no'}
{'cost' }
{'price' }
{'code' }

As the names of the fields are of varying lengths, the fieldnames function

returns a cell array with the names of the fields as character vectors.

QUICK QUESTION!

How can we ask the user for a field in a structure and either

print its value or an error if it is not actually a field?

Answer: To do this, we need to use a dynamic field name to

refer to a field in the structure. A static field name is

struct.fieldname’

whereas a dynamic field name uses a character vector

struct.('fieldname')

which means that the fieldname could be read in from the

user. The isfield function can be used to determine whether

or not it is a field of the structure. Then, by using a dynamic

field name, we can make the code general. The following is

the code for the variable package:

inputfield=input('Which field would you like to see: ','s');

if isfield(package, inputfield)
fldtouse=package.(inputfield);
fprintf('The value of the %s field is: ', ...

inputfield)
disp(fldtouse)

else

fprintf('Error: %s is not a valid field\n', inputfield)

end

This code would produce this output (assuming the package

variable was initialized as shown previously):

Which field would you like to see: cost

The value of the cost field is: 19.9900

286 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Curly braces are used to refer to the elements, as pack_fields is a cell array. For

example, we can refer to the length of one of the field names:

>> length(pack_fields{2})
ans=

4

8.2.4 Vectors of Structures

In many applications, including database applications, information would

normally be stored in a vector of structures, rather than in individual structure

variables. For example, if the computer super mart is storing information on all
of the software packages that it sells, it would likely be in a vector of structures

such as the following:

packages

item_no cost price code

1 123 19.99 39.95 g

2 456 5.99 49.99 l

3 587 11.11 33.33 w

In this example, packages is a vector that has three elements. It is depicted as a

column vector, although it may be a row vector. Each element is a structure con-

sisting of four fields: item_no, cost, price, and code. It may look like a matrix,
which has rows and columns, but it is, instead, a vector of structures.

This vector of structures can be created several ways. One method is to create a
structure variable, as shown earlier, to store information on one software pack-

age. This can then be expanded to be a vector of structures by assigning to

packages(2) and packages(3).

Alternatively, the first structure could be treated as a vector to begin with by

assigning to packages(1), then packages(2), then packages(3).

Both of these methods, however, involve extending the vector. As we have
already seen, preallocating any vector in MATLAB is more efficient than extend-

ing it. There are several methods of preallocating the vector. By starting with the

last element, MATLABwould create a vector with that many elements. Then, the
elements from 1 through end-1 could be initialized. For example, for a vector of

structures that has three elements, start with the third element.

>> packages(3)=struct(item_no=587,cost=11.11,...
price=33.33, code= 'w');

>> packages(1)=struct(item_no=123,cost=19.99,...
price=39.95, code= 'g');

>> packages(2)=struct(item_no=456, cost=5.99,...
price=49.99,code= 'l');

2878.2 Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Also, the vector of structures can be preallocated without assigning any values.

>> packages(3)= ...
struct('item_no',[],'cost',[],'price',[],'code',[])

packages=
1x3 struct array with fields:

item_no
cost
price
code

Then, the values in the individual structures could be replaced in any order.

Typing the name of the variable will display only the size of the structure vector

and the names of the fields:

>> packages
packages=
1x3 struct array with fields:

item_no
cost
price
code

The variable packages is now a vector of structures, so each element in the vector
is a structure. To display one element in the vector (one structure), an index into

the vector would be specified. For example, to refer to the second element:

>> packages(2)
ans=

item_no: 456
cost: 5.9900

price: 49.9900
code: 'l'

To refer to a field, it is necessary to refer to the particular structure, and then the
field within it. Thismeans using an index into the vector to refer to the structure,

and then the dot operator to refer to a field. For example:

>> packages(1).code
ans=

'g'

Thus, there are essentially three levels to this data structure. The variable packages

is the highest level, which is a vector of structures. Each of its elements is an indi-

vidual structure. The fieldswithin these individual structures are the lowest level.

To refer to a particular field for all structures, in most programming languages it

wouldbenecessary to loopthroughall elements in thevectoranduse thedotoper-
ator to refer to the field for each element.However, this is not the case inMATLAB.

For example, to print all of the costs, the fprintf would do this automatically in

MATLAB:

>> fprintf('%f\n',packages.cost)
19.990000
5.990000
11.110000

288 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Using the dot operator in this manner to refer to all values of a field would

result in the values being stored successively in the default variable ans as this
method results in a comma-separated list:

>> packages.cost
ans=

19.9900

ans=
5.9900

ans=
11.1100

However, the values can all be stored in a vector by using square brackets.

>> pc=[packages.cost]
pc=

19.9900 5.9900 11.1100

Using this method, MATLAB allows the use of functions on all of the same

fields within a vector of structures. For example, to sum all three cost fields,
the vector of cost fields is passed to the sum function:

>> sum([packages.cost])
ans=

37.0900

For vectors of structures, the entire vector (e.g., packages) could be passed to a

function, or just one element (e.g., packages(1)) whichwould be a structure, or a

field within one of the structures (e.g., packages(2).price).

PRACTICE 8.3

A siliconwafermanufacturer stores, for every part in their inventory, a part number, howmany are

in the factory, and the cost for each. First, create a vector of structs called parts so that when dis-

played it has the following values:

>> parts
parts=
1x3 struct array with fields:

partno
quantity
costper

>> parts(1)
ans=

partno: 123
quantity: 4
costper: 33

>> parts(2)
ans=

partno: 142
quantity: 1
costper: 150

2898.2 Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> parts(3)

ans=

partno: 106

quantity: 20

costper: 7.5000

Next, write general code that will, for any values and any number of structures in the variable

parts, print the part number and the total cost (quantity of the parts multiplied by the cost of each)

in a column format.

For example, if the variable parts stores the previous values, the result would be:

123 132.00

142 150.00

106 150.00

The previous example involved a vector of structs. In the next example, a some-

what more complicated data structure will be introduced: a vector of structs in
which some fields are vectors themselves. The example is a database of infor-

mation that a professor might store for a course. This will be implemented

as a vector of structures. The vector will store all of the course information.

Every element in the vector will be a structure, representing all information

about one particular student. For every student, the professor wants to store

(for now, this would be expanded later):

n name (a character vector)
n university identifier (ID) number

n quiz scores (a vector of four quiz scores)

The vector variable, called student, might look like the following:

student

name id_no quiz

1 2 3 4

1 C, Joe 999 10.0 9.5 0.0 10.0

2 Hernandez, Pete 784 10.0 10.0 9.0 10.0

3 Brownnose, Violet 332 7.5 6.0 8.5 7.5

Each element in the vector is a struct with three fields (name, id_no, quiz). The

quiz field is a vector of quiz grades. The name field is a character vector.

This data structure could be defined as follows.

>> student(3)=struct('name','Brownnose, Violet',...
'id_no',332,'quiz', [7.5 6 8.5 7.5]);

>> student(1)=struct('name','C, Joe',...
'id_no',999,'quiz', [10 9.5 0 10]);

>> student(2)=struct('name','Hernandez, Pete',...
'id_no',784,'quiz', [10 10 9 10]);

290 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Once the data structure has been initialized, in MATLAB we could refer to dif-

ferent parts of it. The variable student is the entire array; MATLAB just shows the
names of the fields.

>> student
student=
1x3 struct array with fields:

name
id_no
quiz

To see the actual values, one would have to refer to individual structures and/or

fields.

>> student(1)
ans=

name: 'C, Joe'
id_no: 999
quiz: [10 9.5000 0 10]

>> student(1).quiz
ans=

10.0000 9.5000 0 10.0000

>> student(1).quiz(2)
ans=

9.5000

>> student(3).name(1)
ans=

'B'

With a more complicated data structure like this, it is important to be able to
understand different parts of the variable. The following are examples of expres-

sions that refer to different parts of this data structure:

n student is the entire data structure, which is a vector of structs

n student(1) is an element from the vector, which is an individual struct

n student(1).quiz is the quiz field from the structure, which is a vector of
double values

n student(1).quiz(2) is an individual double quiz grade

n student(3).name(1) is the first letter of the third student’s name (a char)

One example of using this data structure would be to calculate and print the

quiz average for each student. The following function accomplishes this. The
student structure, as defined before, is passed to this function. The algorithm

for the function is:

n Print column headings

n Loop through the individual students; for each:
n Calculate the average of the quiz grades

n Print the student’s name and quiz average

2918.2 Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

With the programming method, a second (nested) loop would be required to

find the running sum of the quiz grades. However, we can use the mean func-
tion to find the aveage grades for each student. The function is defined as

follows:

printAves.m

function printAves(student)
% This function prints the average quiz grade
% for each student in the vector of structs
% Format: printAves(student array)

fprintf('%-20s %-10s\n', 'Name', 'Average')
for i=1:length(student)

ave=mean([student(i).quiz]);
fprintf('%-20s %.1f\n', student(i).name, ave);

end

Here is an example of calling the function:

>> printAves(student)
Name Average
C, Joe 7.4
Hernandez, Pete 9.8
Brownnose, Violet 7.4

8.2.5 Nested Structures

A nested structure is a structure in which at least onemember is itself a structure.

For example, a structure for a line segment might consist of fields representing
the two points at the ends of the line segment. Each of these points would be

represented as a structure consisting of the x and y coordinates.

lineseg

endpoint1 endpoint2
x y x y

2 4 1 6

This shows a structure variable called lineseg that has two fields for the endpoints
of the line segment, endpoint1 and endpoint2. Each of these is a structure consist-

ing of two fields for the x and y coordinates of the individual points, x and y.

One method of defining this is to nest calls to the struct function:

>> lineseg=struct('endpoint1',struct(x=2, y=4), ...
'endpoint2',struct(x=1, y=6))

This method is the most efficient.

Another method would be to create structure variables first for the points, and
then use these for the fields in the struct function (instead of using another

struct function).

292 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> pointone=struct(x=5, y=11);
>> pointtwo=struct(x=7, y=9);
>> lineseg=struct(endpoint1=pointone,...

endpoint2=pointtwo);

Once the nested structure has been created, we can refer to different parts of the
variable lineseg. Just typing the name of the variable shows only that it is a struc-

ture consisting of two fields, endpoint1 and endpoint2, each of which is a

structure.

>> lineseg
lineseg=

endpoint1: [1x1 struct]
endpoint2: [1x1 struct]

Typing the name of one of the nested structures will display the field names and

values within that structure:

>> lineseg.endpoint1
ans=

x: 2
y: 4

Using the dot operator twice will refer to an individual coordinate, such as in

the following example:

>> lineseg.endpoint1.x
ans=

2

QUICK QUESTION!

How could we write a function strpoint that returns a string

"(x,y)" containing the x and y coordinates? For example, it

might be called separately to create strings for the two

endpoints and then printed as shown here:

>>fprintf('Thelinesegmentconsistsof%sand%s\n',...
strpoint(lineseg.endpoint1), ...
strpoint(lineseg.endpoint2))

The line segment consists of (2, 4) and (1, 6)

Answer: As an endpoint structure is passed to an input

argument in the function, the dot operator is used within

the function to refer to the x and y coordinates. The sprintf

function is used to create the string that is returned.

strpoint.m

function ptstr=strpoint(ptstruct)
% strpoint receives a struct containing x

and y
% coordinates and returns a string '(x,y)'
% Format: strpoint(structure with x and y

fields)

ptstr=sprintf("(%d, %d) ", ptstruct.x,...

ptstruct.y);
end

2938.2 Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

8.2.6 Vectors of Nested Structures

Combining vectors and nested structures, it is possible to have a vector of struc-
tures in which some fields are structures themselves. Here is an example in

which a company manufactures cylinders from different materials for indus-

trial use. Information on them is stored in a data structure in a program. The
variable cyls is a vector of structures, each of which has fields code, dimensions,

and weight. The dimensions field is a structure itself consisting of fields rad and

height for the radius and height of each cylinder.

cyls

code dimensions weight

rad height

1 x 3 6 7

2 a 4 2 5

3 c 3 6 9

The following is an example of initializing the data structure by

preallocating:

>> cyls(3)=struct(code= 'c', dimensions=...
struct(rad=3, height=6), weight=9);

>> cyls(1)=struct(code= 'x', dimensions=...
struct(rad=3, height=6), weight=7);

>> cyls(2)=struct(code= 'a', dimensions=...
struct(rad=4, height=2), weight=5);

There are several layers in this variable. For example:

n cyls is the entire data structure, which is a vector of structs

n cyls(1) is an individual element from the vector, which is a struct

n cyls(2).code is the code field from the struct cyls(2); it is a char
n cyls(3).dimensions is the dimensions field from the struct cyls(3); it is a

struct itself

n cyls(1).dimensions.rad is the rad field from the struct cyls(1).dimensions;
it is a double number

For these cylinders, one desired calculation may be the volume of each

cylinder, which is defined as π*r2*h, where r is the radius and h is the height.

The following function printcylvols prints the volume of each cylinder, along
with its code for identification purposes. It calls a local function to calculate

each volume.

294 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

printcylvols.m

function printcylvols(cyls)
% printcylvols prints the volumes of each cylinder
% in a specialized structure
% Format: printcylvols(cylinder structure)

% It calls a local function to calculate each volume

for i=1:length(cyls)
vol=cylvol(cyls(i).dimensions);
fprintf('Cylinder %c has a volume of %.1f in^3\n', ...

cyls(i).code, vol);
end
end

function cvol=cylvol(dims)
% cylvol calculates the volume of a cylinder
% Format: cylvol(dimensions struct w/ fields 'rad', 'height')

cvol=pi*dims.rad ^ 2*dims.height;
end

The following is an example of calling this function.

>> printcylvols(cyls)
Cylinder x has a volume of 169.6 in^3
Cylinder a has a volume of 100.5 in^3
Cylinder c has a volume of 169.6 in^3

Note that the entire data structure, cyls, is passed to the function. The function

loops through every element, each of which is a structure. It prints the code field

for each, which is given by cyls(i).code. To calculate the volume of each cylinder,
only the radius and height are needed, so rather than passing the entire struc-

ture to the local function cylvol (which would be cyls(i)), only the dimensions

field is passed (cyls(i).dimensions). The function then receives the dimensions
structure as an input argument and uses the dot operator to refer to the rad

and height fields within it.

PRACTICE 8.4

Modify the function cylvol to calculate and return the surface area of the cylinder in addition to the

volume (2 pi r2+2 pi r h).

8.3 ADVANCED DATA STRUCTURES

MATLAB has several types of data structures in addition to the arrays, cell arrays,
and structures that we have already seen. These can be found in the Documen-

tation under Data Types.

2958.3 Advanced Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

8.3.1 Categorical Arrays

Categorical arrays are a type of array that allows one to store a finite, countable
number of different possible values. Categorical arrays are defined using the

categorical function.

For example, a group is polled on their favorite ice cream flavors; the results are

stored in a categorical array:

>> icecreamfaves=categorical({'Vanilla', 'Chocolate', ...
'Chocolate', 'Rum Raisin', 'Vanilla', 'Strawberry', ...
'Chocolate', 'Rocky Road', 'Chocolate', 'Rocky Road', ...
'Vanilla', 'Chocolate', 'Strawberry', 'Chocolate'});

Another way to create this would be to store the strings in a cell array, and then
convert using the categorical function:

>> cellicecreamfaves={'Vanilla', 'Chocolate', ...
'Chocolate', 'Rum Raisin', 'Vanilla', 'Strawberry', ...
'Chocolate', 'Rocky Road', 'Chocolate', 'Rocky Road', ...
'Vanilla', 'Chocolate', 'Strawberry', 'Chocolate'}
>> icecreamfaves=categorical(cellicecreamfaves);

There are several functions that can be used with categorical arrays. The func-

tion categorieswill return the list of possible categories as a cell column vector,

sorted in alphabetical order.

>> cats=categories(icecreamfaves)
cats=

5�1 cell array
{'Chocolate' }
{'Rocky Road'}
{'Rum Raisin'}
{'Strawberry'}
{'Vanilla' }

The functions summary and countcatswill show the number of occurrences of
each of the categories.

>> summary(icecreamfaves)
Chocolate Rocky Road Rum Raisin Strawberry Vanilla

6 2 1 2 3
>>countcats(icecreamfaves)
ans=

6 2 1 2 3

In the case of the favorite ice cream flavors, there is no natural order for them, so

they are listed in alphabetical order. It is also possible to have ordinal categorical
arrays, however, in which an order is given to the categories.

For example, a person has a wearable fitness tracker that tracks the days on

which a personal goal for the number of steps taken is reached; these are stored

in a file. To simulate this, a variable stepgoalsmet stores these data for a few
weeks. Another cell array stores the possible days of the week.

296 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> stepgoalsmet={'Tue', 'Thu', 'Sat', 'Sun', ...
'Tue', 'Sun', 'Thu', 'Sat', 'Wed', 'Sat', 'Sun'};
>> daynames=...
{'Mon','Tue','Wed','Thu','Fri','Sat','Sun'};

Then, an ordinal categorical array, ordgoalsmet, is created. This allows days to be

compared using relational operators.

>> ordgoalsmet= categorical(stepgoalsmet,daynames,'Ordinal',true);
>> summary(ordgoalsmet)

Mon Tue Wed Thu Fri Sat Sun
0 2 1 2 0 3 3

>> ordgoalsmet(1) < ordgoalsmet(3)
ans=

1
>> ordgoalsmet(4) < ordgoalsmet(3)
ans=

0

8.3.2 Tables

A table is a data structure that stores information in a table format with rows
and columns, each of which can be mnemonically labeled. The table is created

using variables that have the same length, and might be stored in columns, for

example, in a spreadsheet.

We saw in Chapter 1 that MATLAB has MAT-files, which store variables (names
and contents). There are built-in MAT-files. For example, the file “census.mat”

stores US census data every 10 years from 1790 to 1990. To use this, we can load

the .mat file, find out what variables there are, and combine them to form a
table using the table function:

>> clear
>> load census
>> whos

Name Size Bytes Class
cdate 21x1 168 double
pop 21x1 168 double

>> censustable=table(cdate, pop);

There are 21 rows altogether. To display only the first eight rows, the head func-
tion can be used, and the tail function will display the last eight rows.

>> tail(censustable)
ans=
8�2 table

cdate pop
_____ _____
1920 105.7
1930 122.8
1940 131.7
1950 150.7
1960 179
1970 205

2978.3 Advanced Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

1980 226.5
1990 248.7

Notice that the names of the variables became the names of the columns

(which are called variables). There are many ways to index into tables, to either
create a new table that is a subset of the original, or to extract information from

the table into other types of data structures. Using parentheses, we can index

into this table to get a subset of the table, which would also be a table. The
indexing can be done using integers (as with arrays we have seen so far) or with

the variable name. For example, we can extract the first three rows to create a
smaller table that will be easier to work with:

>> earlycens=censustable(1:3, :)
earlycens=

3�2 table
cdate pop
_____ ___
1790 3.9
1800 5.3
1810 7.2

To extract the first column, we can use the integer index or the variable name.

Both of these produce the same result:

>> earlycens(:,1);
>> earlycens(:,'cdate')
ans=

3�1 table
cdate

1790
1800
1810

The dot operator can also be used, but this returns a column vector instead of a
table:

>> earlycens.cdate
ans=

1790
1800
1810

In R2020a, the function renamevars was introduced to rename the variables,

using string arrays for the old and new names.

>> earlycens=renamevars(earlycens, ["cdate", "pop"], ...
["Date", "Pop"])

earlycens=
3�2 table

Date Pop
____ ___
1790 3.9
1800 5.3
1810 7.2

298 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Other table variable functions, which were introduced in R2018a, include:

n addvars to add variable(s)

n removevars to remove variable(s)
n movevars to move the location of variable(s)

Thearray2table functioncanbeusedtocreatea table fromamatrix.Forexample, a

matrix is created using the original two column vectors, and then this matrix is
transformed into a table. Notice the variable names, which could be changed.

>> cenmat=[cdate pop];
>> centab=array2table(cenmat);
>> centab(1:3,:)
ans=

3�2 table
cenmat1 cenmat2
_______ _______
1790 3.9
1800 5.3
1810 7.2

As another example, the following uses the table function to store some simple

information for a doctor’s patients. In this case, we will create both row and
column (variable) labels. There are just three patients, so there are three names

in one cell array that will be used to refer to the rows, and the heights and

weights of the patients are stored in column vectors (each of which has three
values). The column vectors do not need to store the same types of values,

but they must be the same length.

>> names={'Harry','Sally','Jose'};
>> weights=[185; 133; 210]; % Note column vectors
>> heights=[74; 65.4; 72.2];
>> patients=table(weights, heights, 'RowNames', names)
patients=

3�2 table
weights heights
_______ _______

Harry 185 74
Sally 133 65.4
Jose 210 72.2

This created a 3x2 table, with two variables named weights and heights. We can

index into the rows using integers, as we have seen, or using the row names.

>> patients({'Harry' 'Jose'}, :)
ans=

weights heights
_______ _______

Harry 185 74
Jose 210 72.2

Using curly braces to index, the data can be extracted, in the following example,
into a double matrix or column vector.

>> mat=patients{{'Harry' 'Jose'}, :}
mat=

2998.3 Advanced Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

185.0000 74.0000
210.0000 72.2000

Notice that either numerical indices can be used, or themoremnemonic row or

variable names. Tables combine themnemonic names that structures have with
the ability to index that is found in arrays.

The summary function can be used for tables; it shows the variables and some

statistical data for each.

>> summary(patients)
Variables:

weights: 3x1 double
Values:

min 133
median 185
max 210

heights: 3x1 double
Values:

min 65.4
median 72.2
max 74

8.4 SORTING

Sorting is the process of putting a list in order - either descending (highest to

lowest) or ascending (lowest to highest) order. For example, here is a list of
n integers, visualized as a column vector.

1 85

2 70

3 100

4 95

5 80

6 91

What is desired is to sort this in ascending order in place by rearranging this

vector, not creating another. The following is one basic algorithm.

n Look through the vector to find the smallest number and then put it in the

first element in the vector. How? By exchanging it with the number
currently in the first element.

n Then, scan the rest of the vector (from the second element down) looking

for the next smallest (or, the smallest in the rest of the vector). When
found, put it in the first element of the rest of the vector (again, by

exchanging).

n Continue doing this for the rest of the vector. Once the next-to-last
number has been placed in the correct location in the vector, the last

number, by default, has been as well.

300 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

What is important in each pass through the vector is where the smallest value is

so the elements to be exchanged are known (not what the actual smallest
number is).

This table shows the progression. The left column shows the original vector.
The second column (from the left) shows that the smallest number, the 70,

is now in the first element in the vector. It was put there by exchanging with

what had been in the first element, 85. This continues element-by-element,
until the vector has been sorted.

85 70 70 70 70 70

70 85 80 80 80 80

100 100 100 85 85 85

95 95 95 95 91 91

80 80 85 100 100 95

91 91 91 91 95 100

This is called the selection sort; it is one of many different sorting algorithms.

THE TRADITIONAL METHOD

The following function implements the selection sort to sort a vector:

mysort.m

function outv=mysort(vec)
% mysort sorts a vector using the selection sort
% Format: mysort(vector)

% Loop through the elements in the vector to end-1
for i=1:length(vec)-1

indlow=i; % stores the index of the smallest
% Find where the smallest number is
% in the rest of the vector
for j=i+1:length(vec)

if vec(j) < vec(indlow)
indlow=j;

end
end
% Exchange elements
temp=vec(i);
vec(i)=vec(indlow);
vec(indlow)=temp;

end
outv=vec;
end

>> vec=[85 70 100 95 80 91];
>> vec=mysort(vec)
vec=

70 80 85 91 95 100

3018.4 Sorting

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Sorting a row vector results in another row vector. Sorting a column vector

results in another column vector.

The function issorted will return 1 for true if the argument is sorted, or 0 for

false if not.

For matrices, the sort function will by default sort each column. To sort by

rows, the dimension 2 is specified. For example,

>> mat
mat=

4 6 2
8 3 7
9 7 1

>> sort(mat) % sorts by column
ans=

4 3 1
8 6 2
9 7 7

>> sort(mat,2) % sorts by row
ans=

2 4 6
3 7 8
1 7 9

8.4.1 Sorting Vectors of Structures

When working with a vector of structures, it is common to sort based on a par-

ticular field of the structures. For example, recall the vector of structures used to
store information on different software packages that was created in

Section 8.2.4.

THE EFFICIENT METHOD

MATLAB has a built-in function, sort, that will sort a vector in ascending order:

>> vec=[85 70 100 95 80 91];

>> vec=sort(vec)

vec=

70 80 85 91 95 100

Descending order can also be specified. For example,

>> sort(vec,'descend')

ans=

100 95 91 85 80 70

Note

that if we did not have the

‘descend’ option, flip

could be used after

sorting.

302 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

packages

item_no cost price code

1 123 19.99 39.95 g

2 456 5.99 49.99 l

3 587 11.11 33.33 w

Here is a function that sorts this vector of structures in ascending order based on

the price field.

mystructsort.m

function outv=mystructsort(structarr)
% mystructsort sorts a vector of structs on the price field
% Format: mystructsort(structure vector)

for i=1:length(structarr)-1
indlow=i;
for j=i+1:length(structarr)

if structarr(j).price < structarr(indlow).price
indlow=j;

end
end
% Exchange elements
temp=structarr(i);
structarr(i)=structarr(indlow);
structarr(indlow)=temp;

end
outv=structarr;
end

If we had a function printpackages that prints the information in a nice table for-

mat, calling the mystructsort function and also the function to print would
demonstrate this:

>> printpackages(packages)

Item # Cost Price Code

123 19.99 39.95 g
456 5.99 49.99 l
587 11.11 33.33 w

>> packByPrice=mystructsort(packages);
>> printpackages(packByPrice)

Item # Cost Price Code

587 11.11 33.33 w
123 19.99 39.95 g
456 5.99 49.99 l

Note

that only the price field is

compared in the sort

algorithm, but the entire

structure is exchanged.

Consequently, each ele-

ment in the vector, which

is a structure of infor-

mation about a particular

software package,

remains intact.

3038.4 Sorting

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

8.4.2 Sorting Other Types of Data Structures

For a string array, the sort function will sort the strings alphabetically.

>> wordarr=["Hello" "Howdy" "Hi" "Goodbye" "Ciao"];
>> sort(wordarr)
ans=

1�5 string array
"Ciao" "Goodbye" "Hello" "Hi" "Howdy"

For a character matrix, the sort function sorts column by column, using the
ASCII equivalents of the characters. It can be seen from the results that the space

character comes before the letters of the alphabet in the character encoding:

>> words=char('Hello', 'Howdy', 'Hi', 'Goodbye', 'Ciao')
words=

5�7 char array
'Hello '
'Howdy '
'Hi '
'Goodbye'
'Ciao '

>> sort(words)
ans=

5�7 char array
'Ce '
'Giad '
'Hildb '
'Hooloz '
'Howoyye'

This is one reason that a character matrix is not a good idea! However, there is a

way to sort these words, which are rows in the matrix. MATLAB has a function

sortrows that will do this. The way it works is that it examines the row column
by column starting from the left. If it can determine which letter comes first, it

picks up the entire row and puts it in the first row. In this example, the first two

rows are placed based on the first character, ‘C’ and ‘G’. For the other three
strings, they all begin with ‘H’ so the next column is examined. In this case,

the rows are placed based on the second character, ‘e’, ‘i’, ‘o’.

>> sortrows(words)
ans=

5�7 char array
'Ciao '
'Goodbye'
'Hello '
'Hi '
'Howdy '

The sortrows function sorts each row as a block, or group, and it will also work

on numbers. In this example, the rows beginning with 3 and 4 are placed first.

304 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Then, for the rows beginning with 5, the values in the second column (6 and 7)

determine the order.

>> mat=[5 7 2; 4 6 7; 3 4 1; 5 6 2]
mat=

5 7 2
4 6 7
3 4 1
5 6 2

>> sortrows(mat)
ans=

3 4 1
4 6 7
5 6 2
5 7 2

The sortrows function can also be used to sort rows in a table, based on a par-

ticular column.

>> patients
patients=

3�2 table
weights heights
_______ _______

Harry 185 74
Sally 133 65.4
Jose 210 72.2

>> sortrows(patients,'heights')
ans=

3�2 table
weights heights
_______ _______

Sally 133 65.4
Jose 210 72.2
Harry 185 74

The function issortedrows can be used to determine whether the rows in a

matrix or table are sorted, as they would be with sortrows.

To sort a cell array of character vectors, the sort function can be used. If the cell
array is a row vector, a sorted row vector is returned and if the cell array is a

column vector, a sorted column vector is returned. For example, note the trans-

pose operator below which makes this a column vector.

>> engcellnames={'Chemical','Mechanical',...
'Biomedical','Electrical', 'Industrial'};

>> sort(engcellnames')
ans=

5�1 cell array
{'Biomedical'}
{'Chemical' }
{'Electrical'}
{'Industrial'}
{'Mechanical'}

3058.4 Sorting

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Categorical arrays can also be sorted using the sort function. A non ordinal

categorical array, such as icecreamfaves, will be sorted in alphabetical order.

>> sort(icecreamfaves)
ans=
Chocolate Chocolate Chocolate Chocolate

Chocolate Chocolate Rocky Road Rocky Road
Rum Raisin Strawberry Strawberry Vanilla

Vanilla Vanilla

An ordinal categorical array, however, will be sorted using the order specified.
For example, the ordinal categorical array ordgoalsmet was created using

daynames:

>> ordgoalsmet
ordgoalsmet=

Tue Thu Sat Sun Tue Sun
Thu Sat Wed Sat Sun

>> daynames=...
{'Mon','Tue','Wed','Thu','Fri','Sat','Sun'};

Thus, the sorting is done in the order given by daynames.

>> sort(ordgoalsmet)
ans=

Tue Tue Wed Thu Thu Sat
Sat Sat Sun Sun Sun

Data Science and Machine Learning Supplement
Datetime Objects
The function datetime, with no arguments, will create a datetime variable stor-

ing the current date and time. There are multiple formats for datetime values.

>> rightnow=datetime
rightnow=

datetime
23-May-2021 11:14:28

The class is shown next.

>> class(rightnow)
ans=

'datetime'

Using the dot operator, the individual parts can be accessed using Year, Month,

Day, Hour, Minute, Second, for example:

>> rightnow.Year
ans=

2021

306 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

One-Hot Encoding to Transform Categorical Data
It is very common to have categorical feature columns in data tables. Some ML

algorithms, however, can only use numerical data. To solve this, one-hot encod-
ing can be used to transform categorical data into numerical data storing 1 for

true or 0 for false. For example, data on universities might include the categories

‘Public’ or ‘Private’. Here is an example of a table that has categorical values
Public and Private.

universities=
3�2 table

Name Type
______________ _______
{'XYZ Univ' } Public
{'TheBest' } Private
{'AB College'} Public

A new column IsPublic is created and added to the table using the addvars

function. This column has 1 for true if the university is public, and 0 for false

if not.

>> [r, c]=size(universities);
>> IsPublic=zeros(r, 1);
>> wherepublic=universities.Type== 'Public';
>> IsPublic(wherepublic)=1;
>> universities=addvars(universities, IsPublic)
universities=

3�3 table
Name Type IsPublic

______________ _______ ________
{'XYZ Univ' } Public 1
{'TheBest' } Private 0
{'AB College'} Public 1

The same can now be done for Private, and then the original Type column can

be deleted.

>> IsPrivate=zeros(r,1);
>> whereprivate=universities.Type== 'Private';
>> IsPrivate(whereprivate)=1;
>> universities=addvars(universities, IsPrivate);
>> universities.Type=[]
universities=

3�3 table
Name IsPublic IsPrivate

______________ ________ _________
{'XYZ Univ' } 1 0
{'TheBest' } 0 1
{'AB College'} 1 0

Confusion Matrices
Results of classifiers are typically displayed in what is known as a confusion

matrix. The actual data are in the rows, and the model predictions are the

3078.4 Sorting

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

columns. For example, for a binary spam/not spam classifier, it might look

like this:

Model Prediction

Spam Not Spam

Actual Spam TP FN

Data Not Spam FP TN

Therefore, for example, the True Positive results are in the upper left; the actual
data classifies these as ‘spam’ and the model prediction also results in ‘spam’.

The confusion matrix shows the number of emails that have been classified in

each category. For example,

Model Prediction

Spam Not Spam

Actual Spam 50 20

Data Not Spam 10 200

Note that in Machine Learning, this is called a “matrix,” although inMATLAB it

would be much better implemented as a table that has mnemonically labeled
rows and columns.

n Explore Other Interesting Features

The built-in functions cell2struct, which converts a cell array into a vector of

structs, and struct2cell, which converts a struct to a cell array.

Find the functions that convert from cell arrays to number arrays and vice

versa.

Explore the orderfields function.

MATLAB has an entire category of data types and built-in functions that

operate on dates and times. Find this under Language Fundamentals, then

Data Types.

Explore the “is” functions for categorical arrays, such as iscategorical,
iscategory, and isordinal.

Explore the table function struct2table.

Explore timetable, which is a table in which every row is time-stamped.

Explore the functions deal (which assigns values to variables) and

orderfields, which puts structure fields in alphabetical order.

Investigate the randperm function. n

308 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

SUMMARY

COMMON PITFALLS

n Confusing the use of parentheses (cell indexing) versus curly braces

(content indexing) for a cell array

n Forgetting to index into a vector using parentheses or referring to a field of
a structure using the dot operator

n When sorting a vector of structures on a field, forgetting that although

only the field in question is compared in the sort algorithm, entire
structures must be interchanged.

PROGRAMMING STYLE GUIDELINES

n Use arrays when values are the same type and represent in some sense the

same thing.
n Use cell arrays or structures when the values are logically related but not

the same type nor the same thing.

n Use cell arrays, rather than structures, when it is desired to loop through
the values or to vectorize the code.

n Use structures rather than cell arrays when it is desired to use names for

the different values rather than indices.
n Use sortrows to sort strings stored in a matrix alphabetically; for cell

arrays and string arrays, sort can be used.

MATLAB Functions and Commands

cell
celldisp
cellplot
cellstr
strjoin
strsplit
iscellstr

struct
rmfield
isstruct
isfield
fieldnames
categorical
categories

countcats
summary
table
head
tail
renamevars
addvars

removevars
movevars
array2table
sort
issorted
sortrows
issortedrows

MATLAB Operators

cell arrays { }
dot operator for structs .
parentheses for dynamic field names ()

309Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Exercises

1. Create the following cell array:

>> ca={'abc', 11, 3:2:9, zeros(2)}

Use the reshape function to make it a 2 � 2 matrix. Then, write an expression

that would refer to just the last column of this cell array.

2. Createa2�2cellarrayusingthecell functionandthenputvalues inthe individual

elements. Then, insert a row in the middle so that the cell array is now 3 � 2.

3. Create three cell array variables that store people’s names, verbs, and nouns.

For example,

names={'Harry', 'Xavier', 'Sue'};
verbs={'loves', 'eats'};
nouns={'baseballs', 'rocks', 'sushi'};

Write a script that will initialize these cell arrays, and then print sentences

using one random element from each cell array (e.g., ‘Xavier eats sushi’).

4. Create a cell array that contains character vectors, for example,

pets={'cat', 'dog', 'snake'};

Show the difference in the following methods of indexing:

pets(1:2)
pets{1:2}
[p1 p2]=pets{1:2}

5. Writemost of a script “mathprobq” that will pose some randommath problems

to the user and will print for each one whether or not they answered it correctly,

in the format shown below. The script starts with a cell array that stores math

expressions (using just operators +,-,*,/,^) in character vectors. Then, the

script loops to pick 3 of these randomly (it is possible that some may repeat),

poses these problems to the user, and reads the user’s results. For each, it

prints whether or not the user answered it correctly.

6. Write a function countem thatwill receive one cell array as an input argument and

will return the total number of numbers in that cell array (including vectors and

matrices). Assume that the input argument is a cell array, and that it stores only

simple values such as scalars, vectors, matrices, character vectors, and strings

(not more complicated data structures such as other cell arrays or structs).

7. Create a cell array variable that would store for a student their name, university

id number, and GPA. Print this information.

8. Create a structure variable that would store for a student their name, university

id number, and GPA. Print this information.

9. Here is an inefficient way of creating a structure variable to store the three

parts of a person’s phone number:

>> myphone.area= '803';

310 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> myphone.loc= '878';
>> myphone.num= '9876';

Re-write this more efficiently using the struct function:

10. What would be an advantage of using cell arrays over structures?

11. What would be an advantage of using structures over cell arrays?

12. A complex number is a number of the form a+ ib, where a is called the real part,

b is called the imaginary part, and i¼ ffiffiffiffiffiffiffi�1
p

. Write a script that prompts the user

separately to enter values for the real and imaginary parts, and stores them in a

structure variable. It then prints the complex number in the form a+ib. The

script should just print the value of a, then the character vector ‘+ i’, and then

the value of b.

13. Create a data structure to store information about the elements in the periodic

table of elements. For every element, store the name, atomic number,

chemical symbol, class, atomic weight, and a seven-element vector for the

number of electrons in each shell. Create a structure variable to store the

information, for example for lithium:

Lithium 3 Li alkali_metal 6.94 2 1 0 0 0 0 0

14. Write a function separatethem that will receive one input argument which is a

structure containing fields named ‘length’ and ‘width’ and will return the two

values separately.

15. Write a function prtnames that will receive a struct as an input and will print the

names of the fields from the struct in the format shown below. Youmay assume

that the input argument that is passed to the function is in fact a struct.

>> st=struct('month',3,'day',24);
>> prtnames(st)
Field 1 is: 'month'
Field 2 is: 'day'

16. A script stores information on potential subjects for an experiment in a vector

of structures called subjects. The following shows an example of what the

contents might be:

>> subjects(1)
ans=

name: 'Joey'
sub_id: 111
height: 6.7000
weight: 222.2000

For this particular experiment, the only subjects who are eligible are those

whose height or weight is lower than the average height or weight of all subjects.

The script will print the names of those who are eligible. Create a vector with

sample data in a script, and then write the code to accomplish this. Do not

assume that the length of the vector is known; the code should be general.

17. Quiz data for a class is stored in a file. Each line in the file has the student ID

number (which is an integer) followed by the quiz scores for that student.

311Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

For example, if there are four students and three quizzes for each, the file

might look like this:

44 7 7.5 8
33 5.5 6 6.5
37 8 8 8
24 6 7 8

First create thedata file, and thenstore thedata ina script in a vector of structures.

Each element in the vector will be a structure that has two members: the integer

student ID number, and a vector of quiz scores. The structure will look like this:

students

quiz

id_no 1 2 3

1 44 7 7.5 8

2 33 5.5 6 6.5

3 37 8 8 8

4 24 6 7 8

To accomplish this, first use the load function to read all information from the

file into a matrix. Then, using nested loops, copy the data into a vector of

structures as specified. Then, the script will calculate and print the quiz

average for each student.

18. Create a nested struct to store a person’s name, address, and phone numbers.

The struct should have three fields for the name, address, and phone. The

address fields and phone fields will be structs.

19. Design a nested structure to store information on constellations for a rocket

design company. Each structure should store the constellation’s name and

information on the stars in the constellation. The structure for the star

information should include the star’s name, core temperature, distance from

the sun, and whether it is a binary star or not. Create variables and sample data

for your data structure.

20. Write a script that creates a vector of line segments (where each is a nested

structure as shown in this chapter). Initialize the vector using anymethod. Print

a table showing the values, such as shown in the following:

Line From To

==== ======= =======

1 (3, 5) (4, 7)
2 (5, 6) (2, 10)

etc.

312 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

21. Given the following variables:

onedate=struct(Month=6, Day=4, Year=2021);
tempvals(2)=struct('Temps', struct(mint=33, maxt=55), ...

Date=onedate);
tempvals(1)=struct('Temps', struct(mint=40, maxt=62),...

Date=struct(Month=12, Day=10, Year=1999));

For each of the following, write an expression using only the variables above (or

parts of the variables) that would result in the value or error shown.

>>
ans=

12
>>

ans=
4

>>
Unrecognized field name "Year".
>>
temprange=

29
>>
ans=

3�1 cell array
{'Month'}
{'Day' }
{'Year' }

22. A team of engineers is designing a bridge to span the Podunk River. As part of

the design process, the local flooding data must be analyzed. The following

information on each storm that has been recorded in the last 40 years is stored

in a file: a code for the location of the source of the data, the amount of rainfall

(in inches), and the duration of the storm (in hours), in that order. For example,

the file might look like this:

321 2.4 1.5
111 3.3 12.1

etc.

Create a data file. Write the first part of the program: design a data structure to

store the storm data from the file and also the intensity of each storm. The

intensity is the rainfall amount divided by the duration. Write a function to read

the data from the file (use load), copy from the matrix into a vector of structs,

and then calculate the intensities. Write another function to print all of the

information in a neatly organized table. Add a function to the program to

calculate the average intensity of the storms. Add a function to the program to

print all of the information given on the most intense storm. Use a local

function for this function which will return the index of themost intense storm.

23. Create an ordinal categorical array to store the four seasons.

313Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

24. Create a categorical array to store the favorite breakfast beverage of your close

friends. Show the results from using the countcats and summary functions on

your categorical array.

25. Create a table to store information on students; for each, their name, id

number, and major.

26. Use addvars to add a GPA column to your table from Exercise 25.

27. Sort your table from Exercise 25 on the id numbers, in descending order.

28. Write a function mydsort that sorts a vector in descending order (using a loop,

not the built-in sort function).

29. DNA is a double stranded helical polymer that contains basic genetic

information in the form of patterns of nucleotide bases. The patterns of the

base molecules A, T, C, and G encode the genetic information. Construct a cell

array to store some DNA sequences as character vectors; such as

TACGGCAT

ACCGTAC

and then sort these alphabetically. Next, construct a matrix to store some DNA

sequences of the same length and then sort them alphabetically.

30. Create a cell array of all character vectors. Sort them alphabetically. Investigate

the use of some string functions on the cell array, e.g., lower,count, and contains.

31. The wordcloud function (introduced in 2017b) can be used to create a word

cloud from a categorical array or from a table. Create a categorical array and

get a word cloud from it.

Data Science and Machine Learning

32. Investigate the datetime function and its multiple formats.

314 CHAPTER 8: Data Structures

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

2PART

Advanced Topics for Problem
Solving with MATLAB

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This page intentionally left blank

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

CHAPTER 9

Data Transfer

KEY TERMS

file input and output

lower-level file

I/O functions

file types

open the file

close the file

permission

file identifier

standard input

standard output

standard error

end of the file

Application Programming

Interface (API)

RESTful

API calls

endpoint

query parameters

This chapter extends the input and output concepts (I/O) that were introduced

in Chapter 3. In that chapter, we saw how to read values entered by the user

using the input function, and also the output functions disp and fprintf that
display information in windows on the screen.

For file input and output (file I/O), we used the load and save functions that can
read from a data file into a matrix and write from a matrix to a data file. If the

data to be written or file to be read are not in a simple matrix format, lower-level

file I/O functions must be used.

The MATLAB® software has functions that can read and write data from differ-

ent file types such as spreadsheets. For example, it can read from and write to
Excel spreadsheets that have filename extensions such as .xls or .xlsx. There

is also an Import Tool, which allows one to import data from a variety of file

formats.

In this chapter, we introduce some functions that work with different file types,

as well as the programmatic methods using some of the lower-level file input

and output functions. Additionally, MATLAB has functions that allow you to
access data from websites; these functions will be introduced.

CONTENTS

9.1 Writing and
Reading
Spreadsheet
and csv Files
.....................318

9.2 Lower-Level
File I/O
Functions ...319

9.3 Data Transfer
with Web
Sites328

Summary 334

Common
Pitfalls334

Programming
Style
Guidelines335

MATLAB. https://doi.org/10.1016/B978-0-323-91750-6.00009-3

317

Copyright © 2023 Elsevier Inc. All rights reserved.

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

9.1 WRITING AND READING SPREADSHEET
AND CSV FILES

MATLAB has functions that will write to and read from Excel spreadsheet files

and comma separated value (.csv) files. Prior to R2019a, the functions xlswrite,

xlsread, csvread, and csvwrite were used, but these functions are not recom-
mended at this point.

For example, the readtable function will read in a spreadsheet or .csv file into a

table. There is a built-in .csv file in MATLAB that can be used to test this; the file
‘outages.csv’ stores information on some power outages. It is a large file, so we

definitely want to suppress the output when reading it in:

>> outs=readtable('outages.csv');
>> size(outs)
ans=

1468 6

The first few rows and variables (columns) are shown here:

>> outs(1:3, 1:4)
ans=

3�4 table
Region OutageTime Loss Customers

_____________ ______________ _____ __________
{'SouthWest'} 2002-02-01 12:18 458.98 1.8202e+06
{'SouthEast'} 2003-01-23 00:49 530.14 2.1204e+05
{'SouthEast'} 2003-02-07 21:15 289.4 1.4294e+05

The preview function can be used to look at the first eight rows of a file without

having to read in the entire file first.

Thewritetable function can be used towrite a table to a file, for example, to a .txt,

.csv file, or spreadsheet file. For example, the following writes the table outs to a
spreadsheet file with a .xls extension, clears the variables, and reads it back in.

>> writetable(outs,'tab2xls.xls')
>> clear
>> xouts=readtable('tab2xls.xls');

If a matrix is to be used instead of a table, the functions writematrix and read-
matrix can be used.

For example, the following will create a 3 x 5 matrix of random integers, and

then write it to a spreadsheet file “ranexcel.xls” that has three rows and five col-

umns, and then read it back in.

>> ranmat=randi(100, 3, 5)
ranmat=

42 34 41 44 38
1 4 14 46 69

78 58 22 13 38

318 CHAPTER 9: Data Transfer

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> writematrix(ranmat, 'ranexcel.xls')
>> clear
>> xrans=readmatrix('ranexcel.xls')
xrans=

42 34 41 44 38
1 4 14 46 69

78 58 22 13 38

These are just examples; MATLAB has many other functions that read from and
write to different file formats.

9.2 LOWER-LEVEL FILE I/O FUNCTIONS

Whenreading fromadatafile, the load functionworksas longas thedata inthe file
are “regular”—inotherwords, the samekindof dataon every line and in the same

formatonevery line—sothat theycanberead intoamatrix.However,data filesare

not always set up in thismanner.When it is not possible to use load,MATLABhas
what are called lower-level file input functions that can be used. The file must be

opened first, which involves finding or creating the file and positioning an indi-

cator at the beginning of the file. This indicator thenmoves through the file as it is
being read from. When the reading has been completed, the file must be closed.

Similarly, the save function can write or append matrices to a file, but if the
output is not a simple matrix, there are lower-level functions that write to files.

Again, the file must be opened first and closed when the writing has been

completed.

In general, the steps involved are as follows:

n Open the file.

n Read from the file, write to the file, or append to the file.

n Close the file.

First, the steps involved in opening and closing the file will be described. Several

functions that perform themiddle step of reading from or writing to the file will
be described subsequently.

9.2.1 Opening and Closing a File

Files are opened with the fopen function. By default, the fopen function opens
a file for reading. If another mode is desired, a permission is used to specify

which, for example, writing or appending. The fopen function returns�1 if

it is not successful in opening the file or an integer value that becomes the file
identifier if it is successful. This file identifier is then used to refer to the file

when calling other file I/O functions. The general form is

fid=fopen('filename', 'permission');

3199.2 Lower-Level File I/O Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

where fid is a variable that stores the file identifier (it can be named anything)

and the permission includes the following:

r reading (this is the default)
w writing

a appending

After the fopen is attempted, the value returned should be tested to make sure

that the file was opened successfully. For example, if attempting to open for
reading and the file does not exist, the fopenwill not be successful. As the fopen

function returns –1 if the file was not found, this can be tested to decide

whether to print an error message or to carry on and use the file. For example,
if it is desired to read from a file “samp.dat”:

fid=fopen('samp.dat');
if fid==–1

disp('File open not successful')
else

% Carry on and use the file!
end

The fopen function also returns an error message if it is not successful; this can

be stored and displayed. Also, when the first file is opened in aMATLAB session,
it will have a file identifier value of 3, because MATLAB assigns three default

identifiers (0, 1, and 2) for the standard input, standard output, and standard

error. The value of the file identifier can be seen if the output from an fopen
is not suppressed.

>> [fid, msg]=fopen('sample.dat')
fid=

–1
msg=
No such file or directory
>> if fid==–1

error(msg)
else

% Carry on and use the file!
end

No such file or directory
>> [fid, msg]=fopen('samp.dat')
fid=

3
msg=

0�0 empty char array

In the last case there was no error, so the message is an empty character vector.

Files should be closed when the program has finished reading from or writing

or appending to them. The function that accomplishes this is the fclose func-
tion, which returns 0 if the file close was successful or�1 if not. Individual files

can be closed by specifying the file identifier or, if more than one file is open, all

320 CHAPTER 9: Data Transfer

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

open files can be closed by passing the string "all" (or character vector ‘all’) to

the fclose function. The general forms are:

closeresult=fclose(fid);

closeresult=fclose("all")

The result from the fclose function should also be checked with an if-else state-

ment to make sure it was successful, and a message should be printed (if the

close was not successful, that might mean that the file was corrupted, and
the user would want to know that). Therefore, the outline of the code will be:

fid=fopen('filename', 'permission');
if fid==–1

disp('File open not successful')
else

% do something with the file!

closeresult=fclose(fid);
if closeresult== 0

disp('File close successful')
else

disp('File close not successful')
end

end

9.2.2 Reading From Files Using fgetl

There are several lower-level functions that read from files. The fgetl and fgets

functions read text from a file one line at a time; the difference is that the fgets

keeps the newline character if there is one at the end of the line, whereas the
fgetl function gets rid of it. Both of these functions require first opening the file,

and then closing it when finished. Because the fgetl and fgets functions read

one line at a time, these functions are typically inside some form of a loop.

We will concentrate on the fgetl function, which reads character vectors from a

file one line at a time. Other input functions will be covered in Section 9.2.4.
The fgetl function affords more control over how the data are read than other

input functions. The fgetl function reads one line of data from a file into a char-

acter vector; text manipulation functions can then be used to manipulate the
data. As fgetl only reads one line, it is normally placed in a loop that keeps

going until the end of the file is reached. The fgetl function returns a character

vector or�1 if no more data are found in the file.

A general algorithm for reading from a file into character vectors would be:

n Attempt to open the file
n Check to ensure the file open was successful.

n If opened, loop until there is no more data

n For each line in the file:
– read it into a character vector

– manipulate the data

3219.2 Lower-Level File I/O Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n Attempt to close the file

n Check to make sure the file close was successful.

The following is the generic code to accomplish these tasks:

fid=fopen('filename');
if fid==–1

disp('File open not successful')
else

% Attempt to read a line and check
aline=fgetl(fid);
while aline �=–1

% Use text functions to extract numbers,
% character vectors, etc. from the line
% Do something with the data!
% Attempt to read another line
aline=fgetl(fid);

end
closeresult=fclose(fid);
if closeresult== 0

disp('File close successful')
else

disp('File close not successful')
end

end

The permission could be included in the call to the fopen function. For

example:

fid=fopen('filename', 'r');

but the ‘r’ is not necessary as reading is the default.

For example, assume that there is a data file “subjexp.dat”, which has on each
line a number followed by a space followed by a character code. The type

command can be used to display the contents of this file (as the file does
not have the default extension .m, the extension on the file name must be

included).

>> type subjexp.dat
5.3 a
2.2 b
3.3 a
4.4 a
1.1 b

The load function would not be able to read this into a matrix because it con-

tains both numbers and text. Instead, the fgetl function can be used to read
each line as a character vector, and then text functions are used to separate

the numbers and characters. For example, the following just reads each line

and prints the number with two decimal places and then the rest of the char-
acter vector:

322 CHAPTER 9: Data Transfer

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

fileex.m

% Reads from a file one line at a time using fgetl
% Each line has a number and a character
% The script separates and prints them

% Open the file and check for success
fid=fopen('subjexp.dat');
if fid==–1

disp('File open not successful')
else

aline=fgetl(fid);
while aline �=–1

% Separate each line into the number and character
% code and convert to a number before printing
[num, charcode]=strtok(aline);
fprintf('%.2f %s\n', str2double(num), charcode)
aline=fgetl(fid);

end

% Check the file close for success
closeresult=fclose(fid);
if closeresult== 0

disp('File close successful')
else

disp('File close not successful')
end

end

The following is an example of executing this script:

>> fileex
5.30 a
2.20 b
3.30 a
4.40 a
1.10 b
File close successful

In this example, every time the loop action is executed, the fgetl function reads

one line into a character vector. The function strtok is then used to store the

number and the character in separate variables, both of which are character vec-
tors (the second variable actually stores the blank space and the letter). If it is

desired to perform calculations using the number, the function str2double

would be used to convert the number stored in the variable into a double value
as shown.

PRACTICE 9.1

Modify the script fileex to sum the numbers from the file. Create your own file in this format first.

3239.2 Lower-Level File I/O Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

9.2.3 Writing and Appending to Files

There are several lower-level functions that can write to files. Like the other low-
level functions, the file must be opened first for writing (or appending) and

should be closed once the writing has been completed.

We will concentrate on the fprintf function, which can be used to write to a file

and also to append to a file. To write one line at a time to a file, the fprintf func-
tion can be used. We have, of course, been using fprintf to write to the screen.

The screen is the default output device, so if a file identifier is not specified, the

output goes to the screen; otherwise, it goes to the specified file. The default file
identifier number is 1 for the screen. The general form is:

fprintf(fid, 'format', variable(s));

The fprintf function actually returns the number of bytes that was written to the

file, so if it is not desired to see that number, the output should be suppressed
with a semicolon as shown here.

The following is an example of writing to a file named “tryit.txt”:

>> fid=fopen('tryit.txt', 'w');

>> for i=1:3
fprintf(fid,'The loop variable is %d\n', i);

end

>> fclose(fid);

The permission in the call to the fopen function specifies that the file is opened

for writing to it. Just like when reading from a file, the results from fopen and
fclose should really be checked to make sure they were successful. The fopen

function attempts to open the file for writing. If the file already exists, the con-

tents are erased so it is as if the file had not existed. If the file does not currently
exist (which would be the norm), a new file is created. The fopen could fail, for

example, if there isn’t space to create this new file.

To see what was written to the file we could then display the contents using type.

PRACTICE 9.2

Create a 3 � 5 matrix of random integers, each in the range from 1 to 100. Write the sum of each

row to a file called “myrandsums.dat” using fprintf. Confirm that the file was created correctly.

The fprintf function can also be used to append to an existing file. The permis-

sion is ‘a’, so the general form of the fopen would be:

fid=fopen('filename', 'a');

Then, using fprintf (typically in a loop), wewould write to the file starting at the

end of the file. The file would then be closed using fclose. What is written to the

Note

that when writing to the

screen, the value

returned by fprintf is not

seen, but could be stored

in a variable.

324 CHAPTER 9: Data Transfer

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

end of the file does not have to be in the same format as what is already in the

file when appending.

9.2.4 Alternate File Input Functions

The function fscanf reads formatted data into a matrix, using conversion for-
mats such as %d for integers, %s for strings, and %f for floats (double values).

The textscan function reads text data from a file and stores the data in a cell

array; it also uses conversion formats. The fscanf and textscan functions can
read the entire data file into one data structure. In terms of level, these two func-

tions are somewhat in between the load function and the lower-level functions,

such as fgetl. The file must be opened using fopen first and should be closed
using fclose after the data have been read. However, no loop is required; these

functions will read in the entire file automatically into a data structure.

Instead of using the fgetl function to read one line at a time, once a file has been

opened the fscanf function can be used to read from this file directly into a
matrix. However, the matrix must be manipulated somewhat to get it back into

the original form from the file. The format of using the function is:

mat=fscanf(fid, 'format', [dimensions])

The fscanf reads into the matrix variable mat columnwise from the file identi-

fied by fid. The ‘format’ includes conversion characters much like those used in
the fprintf function. The ‘format’ specifies the format of every line in the file,

which means that the lines must be formatted consistently. The dimensions

specify the desired dimensions of mat; if the number of values in the file are
not known, inf can be used for the second dimension.

For example, the following would read in from the file subjexp.dat; each line

contains a number, followed by a space, and then a character.

>> type subjexp.dat
5.3 a
2.2 b
3.3 a
4.4 a
1.1 b

>> fid=fopen('subjexp.dat');

>> mat=fscanf(fid,'%f %c',[2, inf])
mat=

5.3000 2.2000 3.3000 4.4000 1.1000
97.0000 98.0000 97.0000 97.0000 98.0000

>> fclose(fid);

The fopen opens the file for reading. The fscanf then reads from each line one
double and one character and places each pair in separate columns in the matrix

(in other words every line in the file becomes a column in the matrix). Note that

the space in the format specifier is important: '%f %c' specifies that there is a float,

3259.2 Lower-Level File I/O Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

a space, and a character. The dimensions specify that the matrix is to have two

rows by however many columns are necessary (equal to the number of lines
in the file). As matrices store values that are all the same type, the characters

are stored as their ASCII equivalents in the character encoding (e.g., ‘a’ is 97).

Once this matrix has been created, it may be more useful to separate the rows
into vector variables and to convert the second back to characters, which can be

accomplished as follows:

>> nums=mat(1,:);

>> charcodes=char(mat(2,:))
charcodes=
abaab

Of course, the results from fopen and fclose should be checked but were omit-
ted here for simplicity.

PRACTICE 9.3

Write a script to read in this file using fscanf, and sum the numbers.

QUICK QUESTION!

Why is the space in the conversion specifier '%f %c' impor-

tant? Would the following also work?

>> mat=fscanf(fid,'%f%c',[2, inf])

Answer: No, that would not work. The conversion specifier

’%f %c’ specifies that there is a real number, then a space,

then a character. Without the space in the conversion speci-

fier, it would specify a real number immediately followed by a

character (which would be the space in the file). Then, the next

time it would be attempting to read the next real number, but

the file position indicator would be pointing to the character

on the first line; the error would cause the fscanf function

to halt. The end result follows:

>> fid=fopen('subjexp.dat');

>> mat=fscanf(fid,'%f%c',[2, inf])

mat=

5.3000

32.0000

The 32 is the numerical equivalent of the space character ‘ ’,

as seen here.

>> double(' ')

ans=

32

QUICK QUESTION!

Instead of using the dimensions [2, inf] in the fscanf function,

could we use

[inf ,2]?

Answer: No, [inf, 2] would not work. Because fscanf reads

each row from the file into a column in thematrix, the number

of rows in the resulting matrix are known but the number of

columns are not.

326 CHAPTER 9: Data Transfer

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Another option for reading from a file is to use the textscan function. The texts-

can function reads text data from a file and stores the data in column vectors in

a cell array. The textscan function is called, in its simplest form, as

cellarray=textscan(fid, 'format');

where the ‘format’ includes conversion characters much like those used in the
fprintf function. The ‘format’ essentially describes the format of columns in the

data file, which will then be read into column vectors. For example, to read
the file ‘subjexp.dat’ we could do the following (again, for simplicity, omitting

the error-check of fopen and fclose):

>> fid=fopen('subjexp.dat');

>> subjdata=textscan(fid,'%f %c');

>> fclose(fid);

The format specifier '%f %c' specifies that on each line there is a double value

followed by a space followed by a character. This creates a 1 x 2 cell array var-
iable called subjdata. The first element in this cell array is a column vector of

doubles (the first column from the file); the second element is a column vector

of characters (the second column from the file), as shown here:

>> subjdata
subjdata=

1�2 cell array
{5�1 double} {5�1 char}

>> subjdata{1}
ans=

5.3000
2.2000
3.3000
4.4000
1.1000

>> subjdata{2}
ans=

5�1 char array
'a'
'b'
'a'
'a'
'b'

To refer to individual values from the vector, it is necessary to index into the cell

array using curly braces and then index into the vector using parentheses. For
example, to refer to the third number in the first element of the cell array:

>> subjdata{1}(3)
ans=

3.3000

3279.2 Lower-Level File I/O Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

A script that reads in these data and echo prints is shown here:

textscanex.m

% Reads data from a file using textscan

fid=fopen('subjexp.dat');

if fid==–1

disp('File open not successful')

else

% Reads numbers and characters into separate elements

% in a cell array

subjdata=textscan(fid,'%f %c');

len=length(subjdata{1});

for i= 1:len

fprintf('%.1f %c\n',subjdata{1}(i),subjdata{2}(i))

end

closeresult=fclose(fid);

if closeresult== 0

disp('File close successful')

else

disp('File close not successful')

end

end

Executing this script produces the following results:

>> textscanex
5.3 a
2.2 b
3.3 a
4.4 a
1.1 b
File close successful

PRACTICE 9.4

Modify the script textscanex to calculate the average of the column of numbers.

9.3 DATA TRANSFER WITH WEB SITES

MATLAB has functions that allow you to access data that are readily available

onmany websites. Many companies and government agencies put data on their

sites. Examples include weather, census, mapping, transportation schedules,
and car sharing sites. There are a lot of concepts related to accessing these data,

and there is a lot of jargon in this section. To a degree, this goes beyond the
scope of this book, but the possibilities for cool applications are endless and

328 CHAPTER 9: Data Transfer

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

so it is hoped that this will spark interest in readers, who will then investigate

these topics further.

An Application Programming Interface (API) allows for communication

between devices or computers. Device APIs communicate between devices.
Remote or web APIs connect computers; for example, a web API may connect

a web application to a database. Some APIs are private, and some are public.

A RESTful (Representational State Transfer) API is a particular type of API.

API calls allow one to retrieve data or to edit data in a database. API calls use

HTTP requests. HTTPmethods include GET, POST, PUT, and DELETE. API calls

combine HTTP request messages, or methods, and the desired structure of the
response. For example, a GET request allows one to retrieve data from a data-

base based on parameters. In MATLAB, the function webread is used for this.

Thewebwrite function retrieves data based on an object; this is a POST request.
These functions were introduced in R2014b.

Javascript Object Notation, or JSON, is a standard notation that is used to create
an object for a POST request, or to standardize the return format of information

in a GET request. JSON uses what are called Key Value pairs, which are similar

to structure field names and their values in MATLAB.

The webread function reads information from a RESTful web service that is
specified by a URL. The URL is the API service endpoint. Assuming that the var-

iable url stores the URL of a web service as a character vector, the call

wdata=webread(url);

will read data from the web service, return the content, and store it in a variable

wdata. The data returned may be in JSON format. Query parameters may be
passed to the webread function in the form of Key Value pairs, to request spec-

ified information, for example,

wdata=webread(url, Key1, Value1, Key2, Value2);

For example, for a stock API, it might be necessary to request information about
a particular stock, so, for example:

wdata=webread(url, ‘symbol’,’acme’);

This might be done in a loop to get information about multiple stocks; the stock

names might be in a cell array that is indexed. If calls to the API are made too

quickly, theremaybe errors, so in some cases itmay beuseful to put apause state-
ment in the loop so that this does not occur. Also, in some cases it might take a

while for the data to be read from the web site. It may be useful to put some form

of print statement in the loop to let the user know what is going on, e.g.,

Retrieving stock data for 'GOOGL'..
Retrieving stock data for 'AAPL'..

3299.3 Data Transfer with Web Sites

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Images and audio data can also be read from a RESTful web service; see the doc-

umentation on the webread function and more on images and sounds in
Chapter 13.

The format of the input to webread and the format of the output from it are
dictated by the web service. The webread function itself sometimes translates

the returned data from JSON to another format, for example, a struct array.

Options in the form of Key Value pairs can be specified using the weboptions

function. Without any parameters, weboptions creates a weboptions object:

ans=
weboptions with properties:

CharacterEncoding: 'auto'
UserAgent: 'MATLAB 9.10.0.1602886 (R2021a)'

Timeout: 5
Username: ' '
Password: ' '
KeyName: ' '

KeyValue: ' '
ContentType: 'auto'

ContentReader: []
MediaType: 'auto'

RequestMethod: 'auto'
ArrayFormat: 'csv'

HeaderFields: []
CertificateFilename: 'default'

If a web service expects a Key name and its value, this can be specified. For

example, if a web service expects a value for a Key called timein, this could
be specified as

myopt=weboptions('KeyName', 'timein', 'KeyValue', 10);

Another option might specify that the format of the output should be a char-

acter vector rather than, for example, JSON:

myopt=weboptions('ContentType', 'text');

Thewebwrite function can also retrieve information from aweb service, using a

POST request that is based on an object. Frequently the format of the object is
JSON. These requests are more complicated than using webread. See the

MATLAB documentation for more details and examples.

In R2016b, new functions jsonencode and jsondecode were introduced that

make it easy to convert from MATLAB types to JSON and vice versa. For exam-
ple, the following takes a struct and encodes it in JSON format and then back to

a struct.

>> personstruct=struct('Name', 'Harry', 'Age', 33);
>> jsonpers=jsonencode(personstruct)
jsonpers=

'{"Name":"Harry","Age":33}'

330 CHAPTER 9: Data Transfer

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> newstr=jsondecode(jsonpers)
newstr=

struct with fields:

Name: 'Harry'
Age: 33

There are many examples of web services that are available. To find them, begin
by looking at the examples in the documentation on thewebread function and

in general Web Access from MATLAB.

Some APIs can be accessed easily as seen in this section. Other APIs are pub-

lic but require that some form of access key or authentication be presented.

In many cases, you must request an access key from a web service, and once
it has been returned to you, you must include this key with your request to

the web service. Some of these keys are free, but sometimes you must pay

for them.

To find APIs, the best method is to use a search browser. For example, if you

are interested in getting weather information, you might search for “weather
api”. Options for different weather web services will appear in the browser.

You must read the information in detail about each web service API, includ-

ing whether or not you need an access key and if so how to get it, the query
parameters that are necessary to retrieve data, and the format of the output

that will be returned. If you are interested in a particular company, search for

the company name, e.g., “company API”. There are endless possibilities.
There is so much data out there!

Data Science and Machine Learning Supplement
Built-In Files
There are several .mat files storing data sets that are built intoMATLAB.We have

seen the census.mat file.

Other built-in .mat files include “accidents.mat,” which stores accident data

from the 50 United States and Washington, D.C., “patients.mat,” which

stores 10 features for 100 medical patients, and “wind.mat,” which stores
position and velocity components of air currents. Statistics and Machine

Learning Toolbox™ also stores several .mat files that contain labeled

data sets.

There are also built-in .csv files. We have seen the outages.csv file.

>> outs=readtable('outages.csv');
>> size(outs)
ans=

1468 6

3319.3 Data Transfer with Web Sites

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

With six columns, there is too much information to fit on the page, so we will

arbitrarily delete the last two columns just to show what the table would look
like.

>> outs(:, 5:6)=[];
>> head(outs)
ans=
8�4 table

Region OutageTime Loss Customers
_____________ ________________ ______ __________
{'SouthWest' } 2002-02-01 12:18 458.98 1.8202e+06
{'SouthEast' } 2003-01-23 00:49 530.14 2.1204e+05
{'SouthEast' } 2003-02-07 21:15 289.4 1.4294e+05
{'West' } 2004-04-06 05:44 434.81 3.4037e+05
{'MidWest' } 2002-03-16 06:18 186.44 2.1275e+05
{'West' } 2003-06-18 02:49 0 0
{'West' } 2004-06-20 14:39 231.29 NaN
{'West' } 2002-06-06 19:28 311.86 NaN

It is common for the features (the columns) in a table to have labels, but not the

rows. The Loss and Customers columns store double values. Note that some of
them are read in as NaN, which is very common with data sets. The Region col-

umn stores cells, so for most ML algorithms this column should be modified to

store categorical values instead. The OutageTime column stores datetime
arrays.

Another built-in .csv file is airlinesmall.csv, which, despite the name, is quite
large! It has over 120,000 rows and 29 variables.

Data Formats
Data sets come in many different formats, including spreadsheets and images.

Data can be messy, meaning that some values may be missing or incorrect. The

first step in many ML applications is exploratory data analysis, which involves
an initial exploration of the data and may result in modifying the data set in a

variety of ways. Another important initial step is to label the data, if it has not

been already.

Data can be unstructured or structured. An example of unstructured data would

be a book, which consists of text and images, or a clickstream, which is the

sequence of clicks that a user makes when navigating through websites. Struc-
tured data are frequently rectangular, meaning it has rows and columns.

A spreadsheet is an example, and in MATLAB tables are frequently used in

ML applications.

We will concentrate on structured data in a rectangular format, as in the census

table above.

332 CHAPTER 9: Data Transfer

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The rows are referred to as rows (!), records, cases, instances, examples, or obser-

vations. The columns are called features (or feature vectors), variables, dimen-

sions, or attributes. We will generally use the terms rows and features. If the

data set is labeled, then one of the columns is the output (or outcome), and

the rest are inputs (or predictors). The output is typically the last column,
and is sometimes also called the response, or the target data.

Data Scrubbing, Feature Analysis, and Feature Engineering
The first step in the ML process is to take raw data and create a data set from it

that can be used with a ML algorithm. Preprocessing the raw data to create a
usable data set is sometimes referred to as data scrubbing. Data scrubbing

involves cleaning up mistakes in the data and missing or incomplete data. This

data scrubbing can be a very time-consuming part of the entire process but is a
very important step. The data scrubbing should be done after the data have

been read in (in our case into MATLAB), not in the original format (for exam-

ple, not in the .csv file). Note that as of R2019b, tasks in the Live Editor can be
used for many data scrubbing operations.

For a given row, if a feature is missing (which frequently results in NaN in
MATLAB), there are several methods to fix this. One is simply to delete the

row since it contains incomplete information. This reduces the size of the

data set, however, and larger data sets are typically recommended. Other
methods include replacing the value of that feature with the mean for that

feature (or the median or the mode), as we have seen. If outliers are deemed

to be mistakes, they are usually removed from the data set. Keep in mind,
however, that outliers are not always errors and instead can represent valu-

able information.

Analyzing the features is called feature analysis. Feature engineering also

includes manipulating the features, for example, by combining multiple fea-

tures into one and by removing redundancies and irrelevant data. For example,
a data set might contain a feature that contains the names of states (e.g.,

“Virginia”) and another feature that is the abbreviation of the state’s name

(e.g., “VA”). At least one of those feature vectors can be deleted. Other features
may simply be irrelevant. In a hospital data base, is the patient’s favorite ice

cream flavor relevant to any future diagnoses? Well, maybe, but probably

not so that feature could be deleted. This is not always straight-forward, so
the job that the data analyst does to create the useable data set is key to the suc-

cess of theML process.We have also seen the usefulness of binning to transform

real numbers into categories, normalizing features so that one does not dom-
inate over others due to larger numbers, and one-hot encoding to transform

categorical data into numerical data.

3339.3 Data Transfer with Web Sites

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

In many cases, the original data set is very large and contains many features. It

may not be obvious at first which features are important predictors of the out-
come, and which are not very relevant. Therefore, feature engineering tech-

niques (sometimes called feature transformation) can be used to discover the

most relevant features, and to reduce the number of features (dimensionality

reduction). For example, Principal Component Analysis (PCA) creates new fea-

tures that are linear combinations of the original features, with a goal of

explaining most of the variation in the original data.

Once the initial data analysis has taken place, and the features have been engi-

neered into a usable data set, it can then be used for ML. Keep in mind, how-
ever, that this is an iterative process. Preliminary results from the ML algorithm

may indicate that more feature engineering is necessary.

n Explore Other Interesting Features

Reading from and writing to binary files, using the functions fread, fwrite,
fseek, and frewind. Note that to open a file to both read from it and write

to it, the plus sign must be added to the permission (e.g., ‘r+’).

Use help load to find some example MAT-files in MATLAB.

Email can be sent from MATLAB using the sendmail function. In order to
do this, the setpref function must first be used to set preferences for the

email address and for the SMTP server information. See the MATLAB

documentation on these functions for more details and examples.
Similarly, text messages can be sent from MATLAB.

The dlmread function reads from an ASCII-delimited file into a matrix; also
investigate the dlmwrite function.

The Import Tool to import files from a variety of file formats.

In the MATLAB Product Help, enter “Supported File Formats” to find a
table of the file formats that are supported, and the functions that read

from them and write to them. n

SUMMARY

COMMON PITFALLS

n Misspelling a file name, which causes a file open to be unsuccessful.

n Using a lower-level file I/O function, when load or save could be used.

n Forgetting that fscanf reads columnwise into a matrix, so every line in the
file is read into a column in the resulting matrix.

n Forgetting that fscanf converts characters to their ASCII equivalents.

334 CHAPTER 9: Data Transfer

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n Forgetting that textscan reads into a cell array (so curly braces are

necessary to index).

n Forgetting to use the permission ‘a’ for appending to a file (which means
the data already in the file would be lost if ‘w’ was used!).

PROGRAMMING STYLE GUIDELINES

n Use loadwhen the file contains the same kind of data on every line and in

the same format on every line.

n Always close files that were opened.
n Always check to make sure that files were opened and closed successfully.

n Make sure that all data are read from a file; e.g., use a conditional loop to

loop until the end of the file is reached rather than using a for loop.
n Be careful to use the correct formatting specifier when using fscanf or

textscan.

n Store groups of related variables in separate MAT-files.

MATLAB Functions and Commands

xlswrite
xlsread
csvread
csvwrite
readtable
preview

writetable
writematrix
readmatrix
fopen
fclose
fgetl

fgets
feof
fprintf
fscanf
textscan
webread

webwrite
weboptions
jsonencode
jsondecode

Exercises

1. Create a spreadsheet that has on each line an integer student identification

number followed by three quiz grades for that student. Read that information

from the spreadsheet into a matrix, and print the average quiz score for each

student.

2. A spreadsheet popdata.xls stores the population every 20 years for a small town

that underwent a boom and then decline. Create this spreadsheet and then

read this into a table. Create the variable names shown here (use renamevars

for this).

Year Population

1940 4021

1960 8053

1980 14994

2000 9942

2020 3385

335Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

3. Create a set of random matrix variables with descriptive names (e.g.,

ran2by2int, ran3by3double, etc.) for use when testing matrix functions. Store all

of these in a MAT-file.

4. What is the difference between a data file and a MAT-file?

5. Write a script that will prompt the user for the name of a file fromwhich to read.

Loop to error-check until the user enters a valid filename that can be opened.

(Note: this would be part of a longer program that would actually do something

with the file, but for this problem all you have to do is to error-check until the

user enters a valid filename that can be read from.)

6. A file called “potentialfilenames.dat” stores names that might be file names.

Write a script that will read these potential file names, attempt to open them for

reading, and count how many are files that could be opened within the current

directory. Close all opened files, but you do not need to error-check this.

7. A set of data files named “exfile1.dat”, “exfile2.dat”, etc. have been created by a

series of experiments. It is not known exactly how many there are, but the files

are numbered sequentially with integers beginning with 1. The files all store

combinations of numbers and characters, and are not in the same format.

Write a script that will count howmany lines total are in the files. Note that you

do not have to process the data in the files in any way; just count the number of

lines.

8. Write a script that will read from a file x and y data points in the following format:

x 0 y 1
x 1.3 y 2.2

The format of every line in the file is the letter ‘x’, a space, the x value, space, the

letter ‘y’, space, and the y value. First, create the data file with 10 lines in this

format. Do this by using the Editor/Debugger, then File Save As xypts.dat. The

script will attempt to open the data file and error-check to make sure it was

opened. If so, it uses a for loop and fgetl to read each line as a character vector.

In the loop, it creates x and y vectors for the data points. After the loop, it plots

these points and attempts to close the file. The script should print whether or

not the file was successfully closed.

9. Modify the script from the previous problem. Assume that the data file is in

exactly that format, but do not assume that the number of lines in the file are

known. Instead of using a for loop, loop until the end of the file is reached. The

number of points, however, should be in the plot title.

10. Write a script “custformat” that will read names from a file “customers.txt” in

the form “Last, First” (one space in between) and will print them in the form

“First Last”.

11. Create a data file to store blood donor information for a biomedical research

company. For every donor, store the person’s name, blood type, Rh factor, and

blood pressure information. The Blood type is either A, B, AB, or O. The Rh

factor is+or -. The blood pressure consists of two readings: systolic and

diastolic (both are double numbers). Write a script to read from your file into a

data structure and print the information from the file.

336 CHAPTER 9: Data Transfer

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

12. Create a file “parts_inv.dat” that stores on each line a part number, cost, and

quantity in inventory, in the following format:

123 5.99 52

Use fscanf to read this information, and print the total dollar amount of

inventory (the sum of the cost multiplied by the quantity for each part).

13. Create a file which stores on each line a letter, a space, and a real number. For

example, it might look like this:

e 5.4
f 3.3
c 2.2

Write a script that uses textscan to read from this file. It will print the sum of the

numbers in the file. The script should error-check the file open and close, and

print error messages as necessary.

14. Write a script to read in division codes and sales for a company from a file that

has the following format:

A 4.2
B 3.9

Print the division with the highest sales.

15. Write a script that will read some baseball statistics from a file “bbstats.dat”.

Every line will have a player’s name followed by the number of at bats, hits, and

home runs, in that order, in the following format:

Jay Rookie 298 111 3

The script will print each player’s first name and their batting average, which is

hits/at bats.

16. The Wind Chill Factor (WCF) measures how cold it feels with a given air

temperature (T, in degrees Fahrenheit) and wind speed (V, in miles per hour).

One formula for the WCF follows:

WCF¼ 35:7 + 0:6T�35:7 ðV0:16Þ + 0:43T ðV0:16Þ
Create a table showing WCFs for temperatures ranging from�20 to 55 in steps

of 5, and wind speeds ranging from 0 to 55 in steps of 5. Write this to a file

wcftable.dat. Write the script as a live script.

17. Write a script that will loop to prompt the user for n circle radii. The script will

call a function to calculate the area of each circle, and will write the results in

sentence form to a file.

18. Write a script that will read from a file ‘charnum.dat’. Every line in the file will

have a single character immediately followed by a number n. It will write each

character n times, on separate lines, to a file called ‘charrs.txt’.

19. Create a file that has some college department names and enrollments. For

example, it might look like this:

Aerospace 201
Mechanical 66

337Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Write a script that will read the information from this file and create a new file

that has just the first four characters from the department names, followed by

the enrollments. The new file will be in this form:

Aero 201
Mech 66

20. Environmental engineers are trying to determine whether the underground

aquifers in a region are being drained by a new spring water company in the

area. Well depth data have been collected every year at several locations in the

area. Create a data file that stores on each line the year, an alphanumeric code

representing the location, and themeasured well depth that year. Write a script

that will read the data from the file and determine whether or not the average

well depth has been lowered.

21. Write a menu-driven program that will read in an employee data base for a

company from a file, and do specified operations on the data. The file stores the

following information for each employee:

n Name

n Department

n Birth Date

n Date Hired

n Annual Salary

n Office Phone Extension

You are to decide exactly how this information is to be stored in the file. Design

the layout of the file, and then create a sample data file in this format to use

when testing your program. The format of the file is up to you. However, space is

critical. Do not use any more characters in your file than you have to! Your

program is to read the information from the file into a data structure, and then

display a menu of options for operations to be done on the data. You may not

assume in your program that you know the length of the data file. The menu

options are as follows:

1. Print all of the information in an easy-to-read format to a new file.

2. Print the information for a particular department.

3. Calculate the total payroll for the company (the sum of the salaries).

4. Find out how many employees have been with the company for N years (N

might be 10, for example).

5. Exit the program.

22. Practice with JSON format. Create a nested struct and encode it into JSON

format.

23. Read the documentation page on webread. There are example API calls; try

one of them and examine the structure of the result.

24. Use a browser to find a free API of interest to you. Read the documentation page

carefully before attempting to retrieve data from it.

338 CHAPTER 9: Data Transfer

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Data Science and Machine Learning

25. Use the readtable function to read the file ‘outages.csv’ into a table. Use the

head function to examine all six columns (features). Use the class function to

determine the class of all six features. Use the categorical function to convert

the Region feature from a cell array to categorical data. Replace the NaN

values in the Customers feature with the mean number of Customers (not

including the NaN values).

26. There is a built-in Excel file in MATLAB called ‘tsunamis.xlsx’ that stores

information on 162 tsunamis. There are 20 features. Read this into a table using

the readtable function. Do some feature analysis. Should a feature that stores

a lot of NaN values (e.g., Second) be included in your data set? Should rows that

are ‘very doubtful tsunami’ be included? Notice that some NaN values are

present in a feature vector because they are not relevant. For example, if the

Cause of the tsunami is ‘Earthquake’, there is a number in the

EarthquakeMagnitude feature vector, otherwise it is NaN. Decide what kind of

analysis you would like to do with this data, and based on that, create your data

set. For example, you may want to try to find correlations in the data only for

tsunamis caused by earthquakes.

27. Using the built-in Excel file in MATLAB called ‘tsunamis.xlsx’, try out the

geobubble function to create a geographic bubble chart. Use help geobubble

for more information and an example using this file, and look at the

documentation page for geobubble for evenmore examples. Display one of the

features from your table using the geobubble function, and play with some

properties.

339Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This page intentionally left blank

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

CHAPTER 10

Advanced Functions

KEY TERMS

variable number of

arguments

nested functions

anonymous functions

function handle

function function

recursive functions

validation functions

argument block

outer function

inner function

recursion

general (inductive) case

base case

infinite recursion

Functions were introduced in Chapter 3 and then expanded on in Chapter 6. In
this chapter, several advanced features of functions and types of functions are

described. All of the functions that we have seen so far have had a well-defined

number of input and output arguments, but we see that it is possible to have a
variable number of arguments. Anonymous functions are simple one-line func-

tions that are called using their function handle. Other uses of function handles

will also be demonstrated, including function functions and built-in function
functions in the MATLAB® software. Nested functions are also introduced,

which are functions contained within other functions. Finally, recursive func-
tions are functions that call themselves. A recursive function can return a value

or may simply accomplish a task such as printing.

10.1 VARIABLE NUMBERS OF ARGUMENTS

The functions that we have written thus far have contained a fixed number of

input arguments and a fixed number of output arguments. For example, in the
following function that we have defined previously, there is one input argu-

ment and there are two output arguments:

CONTENTS

10.1 Variable
Numbers of
Arguments
...................341

10.2 Validating
Function
Arguments
...................346

10.3 Anonymous
Functions and
Function
Handles348

10.4 Uses of
Function
Handles350

10.5 Nested
Functions .354

10.6 Recursive
Functions .355

Summary 362

Common
Pitfalls362

Programming
Style
Guidelines362

MATLAB. https://doi.org/10.1016/B978-0-323-91750-6.00010-X

341

Copyright © 2023 Elsevier Inc. All rights reserved.

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

areacirc.m

function [area, circum]=areacirc(rad)
% areacirc returns the area and
% the circumference of a circle
% Format: areacirc(radius)

area=pi*rad .* rad;
circum=2*pi*rad;
end

However, this is not always the case. It is possible to have a variable number of

arguments, both input and output arguments. A built-in cell array varargin can

be used to store a variable number of input arguments and a built-in cell array

varargout can be used to store a variable number of output arguments. These
are cell arrays because the arguments could be different types, and cell arrays

can store different kinds of values in the various elements. The function nargin

returns the number of input arguments that were passed to the function, and
the function nargout determines how many output arguments are expected to

be returned from a function.

10.1.1 Variable Number of Input Arguments

For example, the following function areafori has a variable number of input

arguments, either 1 or 2. The name of the function stands for “area, feet or

inches”. If only one argument is passed to the function, it represents the radius
in feet. If two arguments are passed, the second can be a character ‘i’ indicating

that the result should be in inches (for any other character, the default of feet is

assumed). One foot¼12 inches. The function uses the built-in cell array varar-
gin, which stores any number of input arguments. The function nargin returns

the number of input arguments that were passed to the function. In this case,

the radius is the first argument passed so it is stored in the first element in var-
argin. If a second argument is passed (if nargin is 2), it is a character that spec-

ifies the units.

areafori.m

function area=areafori(varargin)
% areafori returns the area of a circle in feet
% The radius is passed, and potentially the unit of
% inches is also passed, in which case the result will be
% given in inches instead of feet
% Format: areafori(radius) or areafori(radius,'i')

n=nargin; % number of input arguments
radius=varargin{1}; % Given in feet by default
if n== 2

unit=varargin{2};
% if inches is specified, convert the radius

342 CHAPTER 10: Advanced Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

if unit== 'i'
radius=radius*12;

end
end
area=pi*radius .^ 2;
end

Some examples of calling this function follow:

>> areafori(3)
ans=

28.2743
>> areafori(1,'i')
ans=

452.3893

In this case, itwasassumedthat the radiuswill alwaysbepassedto the function.The

functionheader can thereforebemodified to indicate that the radiuswillbepassed,

and then a variable number of remaining input arguments (either none or 1):

areafori2.m

function area=areafori2(radius, varargin)
% areafori2 returns the area of a circle in feet
% The radius is passed, and potentially the unit of
% inches is also passed, in which case the result will be
% given in inches instead of feet
% Format: areafori2(radius) or areafori2(radius,'i')

n=nargin; % number of input arguments

if n== 2
unit=varargin{1};
% if inches is specified, convert the radius
if unit== 'i'

radius=radius*12;
end

end
area=pi*radius .^ 2;
end

>> areafori2(3)
ans=

28.2743
>> areafori2(1,'i')
ans=

452.3893

There are basically two formats for the function header with a variable number
of input arguments. For a function with one output argument, the options are

as follows:

Note

that curly braces are

used to refer to the ele-

ments in the cell array

varargin.

Note

that nargin returns the

total number of input

arguments, not just the

number of arguments in

the cell array varargin.

34310.1 Variable Numbers of Arguments

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

function outarg=fnname(varargin)

function outarg=fnname(input arguments, varargin)

Either some input arguments are built into the function header and varargin

stores anything else that is passed, or all of the input arguments go into varargin.

PRACTICE 10.1

The sum of a geometric series is given by

1+r+r2 + r3 + r4 + ...+rn

Write a function called geomser that will receive a value for r and calculate and return the sum of

the geometric series. If a second argument is passed to the function, it is the value of n; otherwise,

the function generates a random integer for n (in the range from 5 to 30). Note that loops are not

necessary to accomplish this. The following examples of calls to this function illustrate what the

result should be:

>> g=geomser(2,4) % 1 +2^1 +2^2 +2^3 +2^4
g=

31
>> geomser(1) % 1+1^1+1^2+1^3+... ?
ans=

12

Note that in the last example, a random integer was generated for n (which must have been 11).

Use the following header for the function, and fill in the rest:

function sgs=geomser(r, varargin)

10.1.2 Variable Number of Output Arguments

A variable number of output arguments can also be specified. The function

nargout can be called to determine how many output arguments were used

to call a function. For example, in the functionmysize below, a matrix is passed
to the function. The function behaves like the built-in function size in that it

returns the number of rows and columns. However, if three variables are used

to store the result of calling this function, it also returns the total number of
elements:

mysize.m

function [row, col, varargout]=mysize(mat)
% mysize returns dimensions of input argument
% and possibly also total # of elements
% Format: mysize(inputArgument)

[row, col]=size(mat);

if nargout== 3
varargout{1}=row*col;

end
end

344 CHAPTER 10: Advanced Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> [r, c] = mysize(zeros(3))
r=

3
c=

3

>> [r, c, elem] = mysize(zeros(3))
r=

3
c=

3
elem=

9

In the first call to the mysize function, the value of nargout was 2, so the func-

tion only returned the output arguments row and col. In the second call, as

there were three variables on the left of the assignment statement, the value
of nargout was 3; thus, the function also returned the total number of

elements.

There are basically two formats for the function header with a variable number
of output arguments:

function varargout=fnname(input args)

function [output args, varargout]=fnname(input args)

Either some output arguments are built into the function header, and vararg-
out stores anything else that is returned or all go into varargout. The function is

called as follows:

[variables]=fnname(inputs);

Note

that the function nargout

does not return the

number of output argu-

ments in the function

header, but the number

of output arguments

expected from the func-

tion (meaning the number

of variables in the vector

on the left side of the

assignment statement

when calling the

function).

QUICK QUESTION!

A temperature in degrees Celsius is passed to a function

called converttemp. How could we write this function so that

it converts this temperature to degrees Fahrenheit, and pos-

sibly also to degrees Kelvin, depending on the number of out-

put arguments? The conversions are:

F¼ 9

5
C + 32

K¼C+ 273:15

Here are possible calls to the function:

>> df=converttemp(17)

df=
62.6000

>> [df, dk]=converttemp(17)
df=

62.6000
dk=

290.1500

Answer: We could write the function in two different ways:

one with only varargout in the function header, and one that

has an output argument for the degrees F and also varargout

in the function header.

Continued

34510.1 Variable Numbers of Arguments

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

10.2 VALIDATING FUNCTION ARGUMENTS

It is possible to declare function input arguments to restrict the input arguments

to certain dimensions, types, and/or constraints imposed by validation

functions. This is new as of R2019b, and makes use of “must be” validation

functions such as mustBeNumeric, mustBePositive, mustBeInteger, mustBe-

Text,mustBeVector,mustBeGreaterThan, etc. For a full list, search “argument
validation functions” in the Documentation. Many of these functions were

introduced in R2017a, but some have been introduced later (e.g., mustBeText

in R2020b).

To accomplish this, an argument block is created within the function body,
before any of the function code. The argument block contains argument dec-

larations, in between the keywords arguments and end. For every input argu-

ment that is declared, the name is given, followed by the required dimensions

QUICK QUESTION!—CONT’D

converttemp.m

function [degreesF, varargout]=converttemp(degreesC)
%converttemp converts temperature in degrees C
% to degrees F and maybe also K
% Format: converttemp(C temperature)

degreesF=9/5*degreesC+32;
n=nargout;
if n == 2

varargout{1}=degreesC+273.15;
end
end

converttempii.m

function varargout=converttempii(degreesC)

% converttempii converts temperature in degrees C
% to degrees F and maybe also K

% Format: converttempii(C temperature)

varargout{1}=9/5*degreesC+32;

n=nargout;

if n==2

varargout{2}=degreesC+273.15;

end

end

346 CHAPTER 10: Advanced Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

in parentheses, the name of a class, and/or validation functions in curly braces.

The format is:

arguments
Inputargname (dimensions) classname {validation functions}
end

Not all of these are required. Here is an example:

testvalid.m

function testvalid(onenum, posvec)
% First arguments block
arguments

onenum (1,1) {mustBeNumeric}
posvec (1,:) {mustBeNumeric, mustBePositive}

end

% Then function code
disp('The vector is: ')
disp(posvec)
result=posvec+onenum;
disp('The result is: ')
disp(result)
end

The arguments block specifies that:

n The input argument onenum must be a scalar (1 x 1), and it must be
numeric.

n The input argument posvecmust be a row vector (or can be converted to a

row vector) containing only positive numbers.

Here are two valid function calls:

>> testvalid(33, 2:5)
The vector is:

2 3 4 5
The result is:

35 36 37 38

>> testvalid(11, [4; 9; 2])
The vector is:

4 9 2
The result is:

15 20 13

Note that in the second call, the vector that is passed is a column vector. The
arguments block actually changes it to be a row vector for use in the

function body.

Here are invalid function calls:

>> testvalid(33, 'abc')
Error using testvalid (line 5)

34710.2 Validating Function Arguments

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Invalid argument at position 2. Value must be numeric.
>> testvalid(11,=2:3)
Error using testvalid (line 5)
Invalid argument at position 2. Value must be positive.

One class can also be declared for each input argument. Again, if it is

possible to convert the input argument to that class, then the class of the

input argument will be modified for the rest of the function. Here is an
example in which the first argument type must be convertible to the type

uint64:

testclass.m

function outarg=testclass(inarg1, inarg2, inarg3)
arguments

inarg1 uint64 {mustBeNumeric}
inarg2
inarg3 {mustBeNumeric}

end

outarg=inarg1*sum(sum(inarg3));
end

In this example call to the function, the first argument is a double, but the func-

tion converts the type (by rounding it to 2). The result is 2*(1+2+3+4), or 20.

>> testclass(2.1, 'abc', 1:4)
ans=

uint64
20

10.3 ANONYMOUS FUNCTIONS AND FUNCTION
HANDLES

An anonymous function is a very simple, one-line function. The advantage of

an anonymous function is that it does not have to be stored in a separate file.
This can greatly simplify programs, as often calculations are very simple and the

use of anonymous functions reduces the number of code files necessary for a

program. Anonymous functions can be created in the Command Window or
in any script or user-defined function. The syntax for an anonymous function

follows:

fnhandlevar = @ (arguments) functionbody;

where fnhandlevar stores the function handle; it is essentially a way of referring to

the function. The handle is returned by the @ operator and then this handle is
assigned to the variable fnhandlevar on the left. The arguments, in parentheses,

correspond to the argument(s) that are passed to the function, just like any

348 CHAPTER 10: Advanced Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

other kind of function. The functionbody is the body of the function, which is

any valid MATLAB expression. For example, here is an anonymous function
that calculates and returns the area of a circle:

>> cirarea = @ (radius) pi*radius .^ 2;

The function handle variable name is cirarea. There is one input argument,

radius. The body of the function is the expression pi*radius .^ 2. The .^ array

operator is used so that a vector of radii can be passed to the function.
The function is then called using the handle and passing argument(s) to it; in

this case, the radius or vector of radii. The function call using the function han-
dle looks just like a function call using a function name:

>> cirarea(4)
ans=

50.2655

>> areas=cirarea(1:4)
areas=

3.1416 12.5664 28.2743 50.2655

The type of cirarea can be found using the class function:

>> class(cirarea)
ans=
function_handle

Unlike functions stored in code files, if no argument is passed to an anony-
mous function, the parentheses must still be in the function definition and

in the function call. For example, the following is an anonymous function

that prints a random real number with two decimal places, as well as a call
to this function:

>> prtran = @ () fprintf('%.2f\n',rand);
>> prtran()
0.95

Typing just the name of the function handle will display its contents, which is

the function definition.

>> prtran
prtran=

@ () fprintf('%.2f\n',rand)

This is why parentheses must be used to call the function, even though no argu-

ments are passed.

An anonymous function can be saved to a MAT-file and then it can be loaded
when needed.

>> cirarea = @ (radius) pi*radius .^ 2;
>> save anonfns cirarea
>> clear
>> load anonfns

34910.3 Anonymous Functions and Function Handles

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> who
Your variables are:
cirarea
>> cirarea
cirarea=

@ (radius) pi*radius .^ 2

Other anonymous functions could be appended to this MAT-file. Even though
an advantage of anonymous functions is that they do not have to be saved in

individual code files, it is frequently useful to save groups of related anonymous

functions in a single MAT-file. Anonymous functions that are used frequently
can be saved in aMAT-file and then loaded from this MAT-file in everyMATLAB

Command Window.

PRACTICE 10.2

Create your own anonymous functions to perform some temperature conversions. Store these

anonymous function handle variables in a MAT-file called “tempconverters.mat”.

10.4 USES OF FUNCTION HANDLES

Function handles can also be created for functions other than anonymous func-

tions, both built-in and user-defined functions. For example, the following
would create a function handle for the built-in factorial function:

>> facth = @factorial;

The @ operator gets the handle of the function, which is then stored in a var-

iable facth.

The handle could then be used to call the function, just like the handle for the

anonymous functions, as in:

>> facth(5)
ans=

120

Using the function handle to call the function instead of using the name of the

function does not in itself demonstrate why this is useful, so an obvious ques-
tion would be why function handles are necessary for functions other than

anonymous functions.

10.4.1 Function Functions

One reason for using function handles is to be able to pass functions to other

functions – these are called function functions. For example, let us say we have a
function that creates an x vector. The y vector is created by evaluating a function

at each of the x points, and then these points are plotted.

350 CHAPTER 10: Advanced Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

fnfnexamp.m

function fnfnexamp(funh)
% fnfnexamp receives the handle of a function
% and plots that function of x (which is 1:.25:6)
% Format: fnfnexamp(function handle)

x=1:.25:6;
y=funh(x);
plot(x,y,'ko')
xlabel('x')
ylabel('fn(x)')
title(func2str(funh))
end

What we want to do is pass a function to be the value of the input argument
funh, such as sin, cos, or tan. Simply passing the name of the function does

not work:

>> fnfnexamp(sin)
Error using sin
Not enough input arguments.

Instead, we have to pass the handle of the function:

>> fnfnexamp(@sin)

This creates the y vector as sin(x) and then brings up the plot as seen in

Fig. 10.1. The function func2str converts a function handle to a character vec-
tor; this is used for the title.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
sin

fn
 (

x)

FIGURE 10.1

Plot of sin created by passing handle of function to plot.

35110.4 Uses of Function Handles

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Passing the handle to the cos function instead would graph cosine instead of

sine:

>> fnfnexamp(@cos)

We could also pass the handle of any user-defined or anonymous function to

the fnfnexamp function. Note that if a variable stores a function handle, just the

name of the variable would be passed (not the @ operator). For example, for
our anonymous function defined previously,

>> fnfnexamp(cirarea)

The function func2strwill return the definition of an anonymous function as a

character vector that could also be used as a title. For example:

>> cirarea = @ (radius) pi*radius .^ 2;
>> fnname = func2str(cirarea)
fnname =
@(radius)pi*radius.^2

There is also a built-in function str2func that will convert a string scalar or char-

acter vector to a function handle. A string containing the name of a function
could be passed as an input argument, and then converted to a function handle.

fnstrfn.m

function fnstrfn(funstr)
% fnstrfn receives the name of a function as a string
% it converts this to a function handle and
% then plots the function of x (which is 1:.25:6)
% Format: fnstrfn(function name as string)
x=1:.25:6;
funh=str2func(funstr);
y=funh(x);
plot(x,y,'ko')
xlabel('x')
ylabel('fn(x)')
title(funstr)
end

This would be called by passing a string to the function, and would create the

same plot as in Fig. 10.1:

>> fnstrfn("sin")

PRACTICE 10.3

Write a function that will receive as input arguments an x vector and a function handle, and will

create a vector y that is the function of x (whichever function handle is passed) andwill also plot the

data from the x and y vectors with the function name in the title.

352 CHAPTER 10: Advanced Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

MATLAB has some built-in function functions. One built-in function function
is fplot, which plots a function between limits that are specified. The form of

the call to fplot is:

fplot(fnhandle, [xmin, xmax])

For example, to pass the sin function to fplot one would pass its handle (see

Fig. 10.2 for the result).

>> fplot(@sin, [-pi, pi])

The fplot function is a nice shortcut; it is not necessary to create x and y vectors,

and it plots a continuous curve rather than discrete points.

The function function feval will evaluate a function handle and execute the

function for the specified argument. For example, the following is equivalent
to sin(3.2):

>> feval(@sin, 3.2)
ans=

–0.0584

-3 -2 -1 0 1 2 3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 10.2

Plot of sin created using fplot.

QUICK QUESTION!

Could you pass an anonymous function to the fplot function?

Answer: Yes, as in:

>> cirarea = @ (radius) pi*radius .^ 2;
>> fplot(cirarea, [1, 5])
>> title(func2str(cirarea))

Note that in this case, the@ operator is not used in the call to

fplot, as cirarea already stores the function handle.

35310.4 Uses of Function Handles

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Another built-in function function is fzero, which finds a zero of a function

near a specified value. For example:

>> fzero(@cos,4)
ans=

4.7124

10.4.2 Timing Functions

The function timeit can be used to time functions and ismore robust than using
tic and toc. The timeit function takes one input argument, which is a function

handle; this can be the handle of any type of function. The time is returned in

seconds.

>> fh = @() prod(1:10000000);
>> timeit(fh)
ans=

0.0308

A warning message may be thrown if the function is too fast.

>> fh = @() prod(1:100);
>> timeit(fh)
Warning: The measured time for F may be inaccurate because it is

running too fast. Try measuring something that takes longer.
> In timeit (line 158)
ans=

1.3993e-06

10.5 NESTED FUNCTIONS

Just as loops can be nested, meaning one inside of another, functions can be

nested. The terminology for nested functions is that an outer function can have
within it inner functions. When functions are nested, every function must have

an end statement. The general format of a nested function is as follows:

outer function header

body of outer function

inner function header
body of inner function

end % inner function

more body of outer function

end % outer function

The inner function can be in any part of the body of the outer function, so there

may be parts of the body of the outer function before and after the inner func-

tion. There can be multiple inner functions.

Argument validation cannot be performed on nested functions.

354 CHAPTER 10: Advanced Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The scope of any variable is the workspace of the outermost function in which it

is defined and used. That means that a variable defined in the outer function
could be used in an inner function (without passing it).

For example, the following function calculates and returns the volume of a
cube. Three arguments are passed to it, for the length and width of the base

of the cube, and also the height. The outer function calls a nested function that

calculates and returns the area of the base of the cube.

Also notice the colors of len and wid in the Editor are different, and there is a
note that their scope spans both functions when you hover over them.

nestedvolume.m

function outvol=nestedvolume(len, wid, ht)
% nestedvolume receives the lenght, width, and
% height of a cube and returns the volume; it calls
% a nested function that returns the area of the base
% Format: nestedvolume(length,width,height)

outvol=base*ht;

function outbase=base
% returns the area of the base
outbase=len*wid;
end % base function

end % nestedvolume function

An example of calling this function follows:

>> v = nestedvolume(3,5,7)
v=

105

Output arguments are different from variables. The scope of an output argu-

ment is just the nested function; it cannot be used in the outer function. In this
example, outbase can only be used in the base function; its value, for example,

could not be printed from nestedvolume.

A variable defined in the inner function could be used in the outer function, but
if it is not used in the outer function the scope is just the inner function.

Examples of nested functions will be used in the section on Graphical User
Interfaces.

10.6 RECURSIVE FUNCTIONS

Recursion is when something is defined in terms of itself. In programming, a

recursive function is a function that calls itself. Recursion is used very commonly

Note

that it is not necessary to

pass the length and width

(len and wid) to the inner

function, as the scope of

these variables includes

the inner function.

35510.6 Recursive Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

in programming, although many simple examples (including some shown in

this section) are actually not very efficient and can be replaced by iterative
methods (loops or vectorized code in MATLAB). Nontrivial examples go

beyond the scope of this book, so the concept of recursion is simply

introduced here.

The first example will be of a factorial. Normally, the factorial of an integer n is
defined iteratively:

n!=1*2*3*...*n

For example, 4!=1*2*3*4, or 24.

Another, recursive, definition is:

n!=n*(n=1)! general case

1!=1 base case

This definition is recursive because a factorial is defined in terms of another fac-

torial. There are two parts to any recursive definition: the general (or inductive)

case, and the base case. We say that, in general, the factorial of n is defined as n
multiplied by the factorial of (n-1), but the base case is that the factorial of 1 is

just 1. The base case stops the recursion.

For example:

3!=3*2!
2!=2*1!

1!=1
=2

=6

The way this works is that 3! is defined in terms of another factorial, as 3*2!.
This expression cannot yet be evaluated because first we have to find out the

value of 2!. Therefore, in trying to evaluate the expression 3*2!, we are inter-

rupted by the recursive definition. According to the definition, 2! is 2*1!.
Again, the expression 2*1! cannot yet be evaluated because first we have to find

the value of 1!. According to the definition, 1! is 1. As we now know what 1! is,

we can continue with the expression that was just being evaluated; now we
know that 2*1! is 2*1, or 2. Thus, we can now finish the previous expression

that was being evaluated; now we know that 3*2! is 3*2, or 6.

This is the way that recursion always works. With recursion, the expressions are

put on hold with the interruption of the general case of the recursive definition.

This keeps happening until the base case of the recursive definition applies. This
finally stops the recursion, and then the expressions that were put on hold are

evaluated in the reverse order. In this case, first the evaluation of 2*1! was com-

pleted, and then 3*2!.

Theremust always be a base case to end the recursion, and the base casemust be

reached at some point. Otherwise, infinite recursionwould occur (theoretically,

although MATLAB will stop the recursion eventually).

356 CHAPTER 10: Advanced Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Wehave already seen the built-in function factorial inMATLAB to calculate fac-

torials, and we have seen how to implement the iterative definition using a run-
ning product. Now we will instead write a recursive function called fact. The

function will receive an integer n, which we will for simplicity assume is a pos-

itive integer and will calculate n! using the recursive definition given previously.

fact.m

function facn=fact(n)
% fact recursively finds n!
% Format: fact(n)
if n == 1

facn = 1;
else

facn=n*fact(n-1);
end
end

The function calculates one value, using an if-else statement to choose between

the base and general cases. If the value passed to the function is 1, the function
returns 1 as 1! is equal to 1. Otherwise, the general case applies. According to

the definition, the factorial of n, which is what this function is calculating, is

defined as n multiplied by the factorial of (n-1). So, the function assigns
n*fact(n-1) to the output argument.

How does this work? Exactly the way the example was sketched previously for
3!. Let us trace what would happen if the integer 3 is passed to the function:

fact(3) tries to assign 3*fact(2)
fact(2) tries to assign 2*fact(1)

fact(1) assigns 1
fact(2) assigns 2

fact(3) assigns 6

When the function is first called, 3 is not equal to 1, so the statement

facn=n*fact(n–1);

is executed. This will attempt to assign the value of 3* fact(2) to facn, but this

expression cannot be evaluated yet and therefore a value cannot be assigned yet

because first the value of fact(2) must be found.

Thus, the assignment statement has been interrupted by a recursive call to the

fact function. The call to the function fact(2) results in an attempt to assign
2* fact(1), but, again, this expression cannot yet be evaluated. Next, the call

to the function fact(1) results in a complete execution of an assignment state-

ment as it assigns just 1. Once the base case has been reached, the assignment
statements that were interrupted can be evaluated, in the reverse order.

Calling this function yields the same result as the built-in factorial function, as

follows:

35710.6 Recursive Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> fact(5)
ans=

120

>> factorial(5)
ans=

120

The recursive factorial function is a very common example of a recursive func-

tion. It is somewhat of a lame example, however, as recursion is not necessary to

find a factorial. A for loop can be used just as well in programming (or, of
course, the built-in function in MATLAB).

Another, better, example is of a recursive function that does not return any-
thing, but simply prints. The following function prtwords receives a sentence,

and prints the words in the sentence in reverse order. The algorithm for the

prtwords function follows:

n Receive a sentence as an input argument.

n Use strtok to break the sentence into the first word and the rest of the
sentence.

n If the rest of the sentence is not empty (in other words, if there is more to

it), recursively call the prtwords function and pass to it the rest of the
sentence.

n Print the word.

The function definition follows:

prtwords.m

function prtwords(sent)
% prtwords recursively prints the words in a
% sentence in reverse order
% Format: prtwords(sentence)

[word, rest]=strtok(sent);
if �isempty(rest)

prtwords(rest);
end
disp(word)
end

Here is an example of calling the function, passing the sentence “what does

this do”:

>> prtwords('what does this do')
do
this
does
what

358 CHAPTER 10: Advanced Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

An outline of what happens when the function is called follows:

In this example, the base case is when the rest of the sentence is empty, in other

words, the end of the original sentence has been reached. Every time the function

is called the execution of the function is interrupted by a recursive call to the func-
tion until the base case is reached.When the base case is reached, the entire func-

tion canbe executed, includingprinting theword (in thebase case, theword ‘do’).

Once that execution of the function is completed, the program returns to the
previous version of the function in which the word was ‘this’ and finishes

the execution by printing the word ‘this’. This continues; the versions of the

function are finished in the reverse order, so the program ends up printing
the words from the sentence in the reverse order.

PRACTICE 10.4

For the following function,

recurfn.m

function outvar=recurfn(num)
% Format: recurfn(number)

if num < 0
outvar=2;

else
outvar=4+recurfn(num-1);

end
end

what would be returned by the call to the function recurfn(3.5)? Think about it, and then type

in the function and test it.

35910.6 Recursive Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Data Science and Machine Learning Supplement
Analyses of One Feature: Minima, Maxima, and Data Spread
We have seen some functions that calculate the central tendency of one feature,

for example, the mean, median, and mode of a set of exam scores.

MATLAB has built-in functions for many statistics. Some others that we have

already seen include min and max to find the minimum or maximum value
in a data set. These functions can also compare vectors or matrices (with the

same dimensions) and return the minimum (or maximum) values from corre-

sponding elements. For example, the following iterates through all elements in
the two vectors, comparing corresponding elements, and returning the mini-

mum for each set of corresponding elements:

>> x=[3 5 8 2 11];
>> y=[2 6 4 5 10];
>> min(x,y)
ans=

2 5 4 2 10

MATLAB also has functionsmink andmaxk that return theminimum andmax-

imum k values in an array. The values that are returned are in sorted order.

These functions can be useful in identifying outliers.

>> vec=randi(100,1,10)
vec=

77 80 19 49 45 65 71 76 28 68
>> mink(vec, 3)
ans=

19 28 45

For example, we could write a function that receives a data set represented as a

vector, and the value of k, and it would return the minimum k andmaximum k

values. If we want different k values for the minimum andmaximum, we could
pass a third argument which would be the value of k for the maximum:

minandmaxk.m

function [outmink, outmaxk]=minandmaxk(dataset, k, varargin)
outmink=mink(dataset, k);
if nargin== 3

outmaxk=maxk(dataset, varargin{1});
else

outmaxk=maxk(dataset, k);
end
end

A property that is useful to know is how spread out the data values are within

the data set. The standard deviation and variance are ways of determining the

360 CHAPTER 10: Advanced Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

spread of the data. The variance is usually defined in terms of the arithmetic

mean as:

var¼

Xn
i¼1

xi�meanð Þ2

n�1

Sometimes, the denominator is defined as n rather than n-1. The default defi-

nition in MATLAB uses n-1 for the denominator, so we will use that
definition here.

For example, for the vector [8 7 5 4 6], there are n¼5 values so n-1 is 4. Also, the
mean of this data set is 6. The variance would be

var¼ 8�6ð Þ2 + 7�6ð Þ2 + 5�6ð Þ2 + 4�6ð Þ2 + 6�6ð Þ2
4

¼ 4+ 1 +1 +4 + 0

4
¼ 2:5

The built-in function to calculate the variance is called var:

>> xvals=[8 7 5 4 6];
>> myvar=var(xvals)
myvar=

2.5000

The standard deviation is the square root of the variance:

sd¼ ffiffiffiffiffiffiffi
var

p

The built-in function in MATLAB for the standard deviation is called std; the

standard deviation can be found either as the sqrt of the variance or using
std. The less spread out the numbers are, the smaller the standard deviation will

be, as it is a way of determining the spread of the data. Likewise, the more

spread out the numbers are, the larger the standard deviation will be. For exam-
ple, the following shows two data sets that have the same number of values and

also the same mean, but the standard deviations are quite different:

>> x1=[9 10 9.4 9.6];
>> mean(x1)
ans=

9.5000
>> std(x1)
ans=

0.4163

>> x2=[2 17=1.5 20.5];
>> mean(x2)
ans=

9.5000

36110.6 Recursive Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> std(x2)
ans=

10.8704

The qualifier ‘omitnan’ can be passed to the var and std functions in order to
omit any NaN values.

n Explore Other Interesting Features

Other function functions and Ordinary Differential Equation (ODE)

solvers can be found using help funfun.

The function function bsxfun. Look at the example in the documentation

page of subtracting the column mean from every element in each column
of a matrix.

The ODE solvers include ode45 (which is used most often), ode23, and

several others. Error tolerances can be set with the odeset function.

Investigate the use of the functions narginchk and nargoutchk.

The function nargin can be used not just when using varargin, but also for

error-checking for the correct number of input arguments into a function.
Explore examples of this. n

SUMMARY

COMMON PITFALLS

n Thinking that nargin is the number of elements in varargin (it may be,
but not necessarily; nargin is the total number of input arguments).

n Trying to pass just the name of a function to a function function; instead,

the function handle must be passed.
n Forgetting the base case for a recursive function.

PROGRAMMING STYLE GUIDELINES

n If some inputs and/or outputs will always be passed to/from a function,

use standard input arguments/output arguments for them. Use varargin

and varargout only when it is not known ahead of time whether other
input/output arguments will be needed.

n Use anonymous functions whenever the function body consists of just a

simple expression.
n Store related anonymous functions together in one MAT-file

n Use iteration instead of recursion when possible.

362 CHAPTER 10: Advanced Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

MATLAB Reserved Words

arguments end (for argument block)

MATLAB Functions and Commands

varargin
varargout
nargin
nargout
mustBeNumeric
mustBePositive
mustBeInteger
mustBeText

mustBeVector
mustBeGreaterThan
func2str
str2func
fplot
feval
fzero
timeit

MATLAB Operators

handle of functions @

Exercises

1. Write a function that will print a random integer. If no arguments are passed to

the function, it will print an integer in the inclusive range from 1 to 100. If one

argument is passed, it is the max and the integer will be in the inclusive range

from 1 to max. If two arguments are passed, they represent the min and max

and it will print an integer in the inclusive range from min to max.

2. Write a function numbers that will create amatrix in which every element stores

the same number num. Either two or three arguments will be passed to the

function. The first argument will always be the number num. If there are two

arguments, the second will be the size of the resulting square (n x n) matrix. If

there are three arguments, the second and third will be the number of rows and

columns of the resulting matrix.

3. The overall electrical resistance of n resistors in parallel is given as:

RT ¼ 1

R1
+

1

R2
+

1

R3
+… +

1

Rn

� ��1

Write a function Req that will receive a variable number of resistance values

and will return the equivalent electrical resistance of the resistor network.

4. Write a function that will receive the radius r of a sphere. It will calculate and

return the volume of the sphere (4/3 π r3). If the function call expects two output

arguments, the function will also return the surface area of the sphere (4 π r2).

363Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

5. Write a function that will receive the price of an item, and possibly also a

discount rate. If a second argument is passed, it would be the discount. For

example, 10 would mean a 10% discount from the original price. The function

returns the final price.

6. Write a function that will receive as an input argument a temperature in

degrees Fahrenheit, and will return the temperature in degrees Celsius and, if

two outputs are expected, also in Kelvin. The conversion factors are:

C¼ (F – 32)*5/9 and K¼C+273.15.

7. Information on some hurricanes is stored in a vector of structures; the name of

the vector variable is hurricanes. For example, one of the structures might be

initialized as follows:

struct('Name','Bettylou', 'Avespeed',18,...
'Size', struct('Width',333,'Eyewidth',22));

Writea functionprintHurr thatwill receiveavectorofstructures inthis formatasan

input argument. It will print, for every hurricane, itsName andWidth in a sentence

format to the screen. If a second argument is passed to the function, it is a file

identifier for an output file (which means that the file has already been opened),

and the function will print in the same format to this file (and does not close it).

8. The built-in function date returns a character vector containing the day, month,

and year. Write a function (using the date function) that will always return the

current day. If the function call expects two output arguments, it will also

return the month. If the function call expects three output arguments, it will

also return the year.

9. List some built-in functions to which you pass a variable number of input

arguments (Note: this is not asking for varargin, which is a built-in cell array,

or nargin.)

10. List some built-in functions that have a variable number of output arguments

(or, at least one!).

11. Write a function that will receive a variable number of input arguments: the

length and width of a rectangle, and possibly also the height of a box that has

this rectangle as its base. The function should return the rectangle area if just

the length and width are passed, or also the volume if the height is also passed.

12. Write a function that will return the factorial of the input argument. First, the

function must validate that the input argument is a positive integer.

13. Write a function that will concatenate two text input arguments together and

return the result. First, the function must validate that both of the input

arguments are text.

14. Write an anonymous function to convert a length from feet to yards (there are

three feet in a yard). Use it to convert 2, 2.5, 3, 3.5, and 4 feet to yards, all in one

expression. (So, two lines of code total: one for the anonymous function, and

one to use it.)

364 CHAPTER 10: Advanced Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

15. Create a set of anonymous functions to do length conversions and store them in

a file named lenconv.mat. Call each a descriptive name, such as cmtoinch to

convert from centimeters to inches.

16. An approximation for a factorial can be found using Stirling’s formula:

n!�
ffiffiffiffiffiffiffiffi
2πn

p n

e

� �n

Write an anonymous function to implement this.

17. Why would you want to use an anonymous function?

18. Write an anonymous function to implement the following quadratic: 3x2–2x+5.

Then, use fplot to plot the function in the range from¼6 to 6.

19. Write a function that will receive data in the form of x and y vectors, and a

handle to a plot function and will produce the plot. For example, a call to the

function would look like wsfn(x,y,@bar).

20. Write a function plot2fnhand that will receive two function handles as input

arguments, and will display in two Figure Windows plots of these functions,

with the function names in the titles. The function will create an x vector that

ranges from 1 to n (where n is a random integer in the inclusive range from 4 to

10). For example, if the function is called as follows

>> plot2fnhand(@sqrt, @exp)

and the random integer is 5, the first Figure Window would display the sqrt

function of x¼1:5, and the second Figure Window would display exp(x) for

x¼1:5.

21. Use feval as an alternative way to accomplish the following function calls:

abs(–4)

size(zeros(4))

Use feval twice for this one!

22. Write a function to calculate the volume of a cone. The volume V is V¼AH,

where A is the area of the circular base (A¼πr2 where r is the radius) and H is

the height. Use a nested function to calculate A.

23. The two real roots of a quadratic equation ax2+bx+c¼0 (where a is nonzero)

are given by

�b� ffiffiffiffi
D

p

2∗a

where the discriminant D¼b2 – 4*a*c. Write a function to calculate and return

the roots of a quadratic equation. Pass the values of a, b, and c to the function.

Use a nested function to calculate the discriminant.

24. A recursive definition of anwhere a is an integer and n is a non-negative integer

follows:

365Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

an ¼ 1 if n¼¼ 0

¼ a∗an�1 if n> 0

Write a recursive function called mypower, which receives a and n and returns

the value of an by implementing the previous definition. Note: The program

should NOT use ^ operator anywhere; this is to be done recursively instead!

Test the function.

25. What does this function do:

function outvar = mystery(x,y)
if y == 1

outvar = x;
else

outvar = x + mystery(x,y–1);
end

Give one word to describe what this function does with its two arguments.

26. The Fibonacci numbers is a sequence of numbers Fi:

0 1 1 2 3 5 8 13 21 34 ...

where F0 is 0, F1 is 1, F2 is 1, F3 is 2, and so on. A recursive definition is:

F0 = 0

F1 = 1

Fn = Fn-2 + Fn-1 if n > 1

Write a recursive function to implement this definition. The function will

receive one integer argument n, and it will return one integer value that is the

nth Fibonacci number. Note that in this definition, there is one general case but

two base cases. Then, test the function by printing the first 20 Fibonacci

numbers.

27. Use fgets to read character vectors from a file and recursively print them

backwards.

Data Science and Machine Learning

28. The Euclidean distance between two points (x1, y1) and (x2, y2) is given by:

E¼ sqrt x1�x2ð Þ ^ 2 + y1� y2ð Þ ^ 2ð Þ
The Manhattan distance is

M¼ abs x1�x2ð Þ + abs y1� y2ð Þ
The Manhattan distance between points is used in some machine learning

algorithms because it is faster and easier to calculate than the Euclidean

distance. Write a function “ptdist” that will receive the x and y coordinates of

two points, and will return the Euclidean distance between them. If two

output arguments are expected, the function will also return the Manhattan

distance (but, it will do this only if two output arguments are expected).

366 CHAPTER 10: Advanced Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

29. Modify the minandmaxk function so that if the function is called with three

variables on the left-hand side of an assignment, it will also return the original

data set without theminimum andmaximum k values. Note: one easy way to do

this is to use the setdiff function. The setdiff function receives two vectors as

input arguments, and returns a vector consisting of all of the values that are

contained in the first vector argument but not the second.

30. Recall that the precision for a classification model measures how accurately

the positive outcome was predicted. The precision is the TP divided by the sum

of TP+FP. Write an anonymous function to find the precision.

367Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This page intentionally left blank

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

CHAPTER 11

Introduction to Object-Oriented
Programming and Graphics

KEY TERMS

procedural languages

object-oriented

languages

classes

hybrid languages

abstract data types

objects

properties

methods

class definition

instances

instantiation

inheritance

parent/child

superclass/subclass

value classes

handle classes

graphics objects

object handle

primitive objects

root object

constructor function

ordinary method

overloading

attributes

copy constructor

destructor function

events

event-driven programming

listeners

callback

Most programming languages are either procedural or object-oriented. Proce-

dural programs are comprised of functions, each of which performs a task.
Object-oriented programs use classes, which contain both data and functions

to manipulate the data. Hybrid languages can utilize both of these program-
ming paradigms. All of our programs so far have been procedural, but the

MATLAB® software uses objects in its graphics, and thus has object-oriented

programming (OOP) capabilities.

In this chapter, we first introduce some of the concepts and terminologies of

OOP using graphics objects and show how to manipulate plot properties using

this system. Later we show how user-defined classes can be created.

11.1 OBJECT-ORIENTED PROGRAMMING

This short section is intended to introduce the very basic ideas behind OOP as
well as some of the terminology that is used. This section is very dense in terms

of the terminology. It is hoped that by introducing the terms once here, and

CONTENTS

11.1 Object-Oriented
Programming
................... 369

11.2 Using Objects
with Graphics
and Plot
Properties
...................370

11.3 User-Defined
Classes and
Objects378

Summary...........406

Common
Pitfalls406

Programming
Style
Guidelines.....406

MATLAB. https://doi.org/10.1016/B978-0-323-91750-6.00011-1

369

Copyright © 2023 Elsevier Inc. All rights reserved.

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

then giving examples in the next two sections, the terms will be easier to

understand.

Built-in data types have certain capabilities associated with them. For example,

we can perform mathematical operations such as adding and dividing with
number types such as double. When a variable is created that stores a value

of a particular type, operations can then be performed that are suitable for

that type.

Similarly, abstract data types are data types that are defined by both data and

operational capabilities. In MATLAB, these are called classes. Classes define

both the data and the functions that manipulate the data. Once a class has been
defined, objects can be created of the class.

To define a class, both the data and the functions that manipulate the datamust
be defined. The data are called properties and are similar to variables in that they

store the values. The functions are called methods. A class definition consists of

the definition of the properties, and the definition of the methods.

Once a class has been defined, objects can be created from the class. The objects

are called instances of the class and an object that is created is an instantiation of
the class. The properties and methods of the object can be referenced using the

object name, the dot operator, and the name of the property or method.

Inheritance is when one class is derived from another. The initial class is called
the base, parent, or superclass, and the derived class is called the derived, child, or

subclass. A subclass is a new class that has the properties and methods of the

superclass (this is what is called inheritance), plus it can have its own properties
and methods. The methods in a subclass can override methods from the super-

class if they have the same name.

MATLAB has built-in classes, and also allows for user-defined classes. There are

two types of classes in MATLAB: value classes and handle classes. The differences

are explained in Section 11.3.MATLAB uses handle classes to implement graph-
ical objects used in plots.

11.2 USING OBJECTS WITH GRAPHICS AND PLOT
PROPERTIES

MATLAB uses graphics in all of its figures. All figures consist of graphics objects,
each of which is referenced using an object handle. The object handles store

objects, which are derived from a superclass called handle.

Graphics objects include primitive objects, which are basic building blocks of

plots, as well as the axes used to orient the objects. The graphics primitives

370 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

include objects such as lines and text. For example, a plot that uses straight line

segments uses the line graphics primitive. More of the graphics primitives are
discussed in Section 12.3. The objects are organized hierarchically, and there

are properties associated with each object.

The computer screen is called the root object and is referenced using the func-

tion groot (which is short for “graphics root”). When plots are made, they
appear in the Figure Window; the Figure Window itself appears on the com-

puter screen. The hierarchy in MATLAB can be summarized as follows:

Root (screen) Parent
j

Figure Window j
j

Axes j
#

Primitive objects Children

In other words, the Figure Window is in the screen; it includes Axes, which are

used to orient graphics primitive objects, which are the building blocks of plots.

Objects and Properties

A Figure Window is an object; the data in objects are stored in properties. Just

calling the figure function will bring up a blank Figure Window and return its
handle; by assigning the handle of this FigureWindow to an object variable, the

properties can then be referenced. For example, if no other figures have been

created yet, the following will create Fig. (1).

>> f=figure
f =

Figure (1) with properties:

Number: 1
Name: ' '

Color: [0.9400 0.9400 0.9400]
Position: [440 378 560 420]

Units: 'pixels'

Show all properties

By default, only a few of the properties are listed; what is shown are the names

of the properties and the values for this instance of the object; these include:

n the figure number: 1

n the name of the figure: none was given so this is an empty character vector
n the color: given as a vector storing the values of the red, green, and blue

components of the color

n the position of the FigureWindowwithin the screen, specified in the units
of pixels (which is shown next); this is a vector consisting of four values:

the number of pixels that the lower left corner of the Figure Window is

37111.2 Using Objects with Graphics and Plot Properties

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

from the left of the screen, the number of pixels that the lower left corner

of the Figure Window is from the bottom of the screen, the length in

pixels, and the height in pixels
n the units: pixels

For the Color property, the three numbers in the vector are real numbers in the
range from 0 to 1. Zero for a color component means none of that color,

whereas one is the brightest possible hue. All zeros represent black, and all ones

represent the color white. The default Color property value of [0.94 0.94 0.94]

is a very light gray.

By clicking on the “all properties” link, all of the properties canbe seen. As long as

the Figure Window is not closed, the handle f can be used to refer to the

Figure Window, but when the Figure Window is closed, the handle is deleted.
Anothermethodofviewing theproperties is topass thehandle to theget function.

>> get(f)

This will show a very long list of property names and values. You may not

understand most of these properties; do not worry about it! Notice, however,

that the Parent of this figure is the Root object, and that there are no Children
since there is nothing in this Figure Window.

PRACTICE 11.1

Call the groot function and store the resulting handle in an object variable. What are the

dimensions of your screen?

(Note that pixels are a fixed size and do not necessarily correspond exactly to the actual number of

pixels on the screen.)

The dot notation is used to reference or change a property of an object. The for-

mat for this is:

objecthandle.PropertyName

For example,

>> f.Color
ans =

0.9400 0.9400 0.9400

QUICK QUESTION!

What would the following display:

>> f

Answer: It would display the same abbreviated list of prop-

erties as was shown when the handle was first created.

Note

that this is the same as

the notation to refer to a

field in a structure, but it

is not a structure; this is

directly referencing a

property within an object.

372 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The following modifies the Color property to a darker gray.

>> f.Color=[0.5 0.5 0.5]

The get and set functions can also be used.

The get function can also be used to retrieve just one particular property; for

example, the Units property, as follows.

>> get(f, 'Units')
ans =

'pixels'

The function set can be used to change property values. For example, the posi-

tion of the Figure Window could be modified as follows.

>> set(f,'Position',[400 450 600 550])

Using the dot notation is preferable to using get and set.

For the figure object stored in f, its built-in class is matlab.ui.Figure; “ui” is the
abbreviation for “user interface” and is used in many graphics names. This can

be seen using the class function.

>> class(f)
ans =

'matlab.ui.Figure'

Recall that a class definition consists of the data (properties) and functions to

manipulate the data (methods). There are built-in functions properties and

methods that display the properties and methods for a particular class. For
example, for the figure referenced by the handle f, we can find the properties;

note that they are not listed in alphabetical order as with get and that only the

names of the properties are returned (not the values).

>> properties(f)
Properties for class matlab.ui.Figure:

Position
OuterPosition
InnerPosition
Units
Renderer
RendererMode
Visible
Color

etc.

The methods for the figure f are as follows.

>> methods(f)

Methods for class matlab.ui.Figure:

Figure getUnitsService
ProcessButtonEventForUIComponent isprop
addlistener java
addprop ne

37311.2 Using Objects with Graphics and Plot Properties

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

double reset
eq scroll
findobj set
get

Static methods:

loadobj

Methods of matlab.ui.Figure inherited from handle.

Again,much of this will not make sense but notice that themethods are derived

from the superclass handle. The methods, or functions, that can be used with
the object f include get and set. Also, the methods eq and ne are defined; these

are equivalent to the equality (==) and inequality (�=) operators. That means
that the equality and inequality operators can be used to determine whether

two figure handles are equal to each other or not.

The various plot functions return a handle for the plot object, which can then

be stored in a variable. In the following, the plot function plots a sin function in
a Figure Window and returns the object handle. This handle will remain valid

as long as the object exists.

>> x=–2*pi: 1/5 : 2*pi;
>> y=sin(x);
>> hl=plot(x,y)
hl =

Line with properties:

Color: [0 0.4470 0.7410]
LineStyle: '–'
LineWidth: 0.5000

Marker: 'none'
MarkerSize: 6

MarkerFaceColor: 'none'
XData: [1x63 double]
YData: [1x63 double]
ZData: [1x0 double]

Show all properties

QUICK QUESTION!

Given two figure objects

>> f=figure(1);
>> g=figure(2);

Assuming that both FigureWindows are still open, what would

be the value of the following expression?

>> f== g

Answer: This would be false. However, consider the follow-

ing, which demonstrates that all of the color components of

the two figures are the same, and that if one figure handle var-

iable is assigned to another, they are equivalent.

>> f.Color == g.Color
ans =

1 1 1
>> h = f;
>> f == h
ans =

1

Note

Notice that the plot is

generated using the line

primitive object. As with

the Figure Window, the

properties can be viewed

and modified using the

dot notation.

374 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

For example, we can find that the parent of the plot is an Axes object.

>> axhan = hl.Parent
ans =

Axes with properties:

XLim: [-8 8]
YLim: [-1 1]

etc.

The objects, their properties, what the properties mean, and valid values can be

found in the MATLAB Help Documentation. Search for Graphics Object Prop-
erties to see a list of the property names and a brief explanation of each.

For example, the Color property is a vector that stores the color of the line as

three separate values for the Red, Green, and Blue intensities, in that order. Each

value is in the range from 0 (whichmeans none of that color) to 1 (which is the
brightest possible hue of that color). In the previous plot example, the Color

was [0 0.4470 0.7410], which means no red, some green, and a lot of blue;

in other words, the line drawn for the sin function was a royal blue hue. This
is the default color for line plots.

More examples of possible values for the Color vector include:

[1 0 0] is red
[0 1 0] is green

[0 0 1] is blue

[1 1 1] is white
[0 0 0] is black

[0.5 0.5 0.5] is a shade of gray

Changing the line width in the figure makes it easier to see the line and its color,

as shown in Fig. 11.1. Also, tab completion is available for class properties and
methods; for example, if you are not sure of the exact property name for the line

width, typing “hl.Li” and then hitting the tab key would display the options.

>> hl.LineWidth=4;

QUICK QUESTION!

How could you change the x-axis limit to [-10 10]?

Answer: >> axhan.XLim=[-10 10]

Note that this modifies the axes in the Figure Window. Using

the dot notation in an assignment statement will show the new

value of axhan.

Note

that in earlier versions of

MATLAB, the default color

was [0 0 1], or full blue.

37511.2 Using Objects with Graphics and Plot Properties

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PRACTICE 11.2

Create x and y vectors, and use the plot function to plot the data points represented by these vec-

tors. Store the handle in a variable and do not close the Figure Window! Inspect the properties and

then change the line width and color. Next, put markers for the points and change themarker size

and edge color.

In addition to handles for objects, the built-in functions gca and gcf return the

handles for the current axes and figure, respectively (the function names stand
for “get current axes” and “get current figure”). In the following example, two

Figure Windows are opened. The current figure and the current axes are the

most recently created.

>> x = –pi: 0.1: pi;
>> f1 = figure(1);
>> p1 = plot(x,sin(x));
>> f2 = figure(2);
>> p2 = plot(x,cos(x), Color=[0 1 1]);
>> curfig=gcf
curfig=

Figure (2) with properties:

-8 -6 -4 -2 0 2 4 6 8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 11.1

Line plot of sin with width of 4.

376 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Number: 2
Name: ' '

Color: [0.9400 0.9400 0.9400]
Position: [440 378 560 420]

Units: 'pixels'

Show all properties

The Children property of the current figure stores the axes that orient the plot;
these axes are also returned by the gca function.

>> curfig.Children
ans =

Axes with properties:

XLim: [–4 4]
YLim: [–1 1]

XScale: 'linear'
YScale: 'linear'

GridLineStyle: '–'
Position: [0.1300 0.1100 0.7750 0.8150]

Units: 'normalized'

Show all properties
>> curfig.Children ==gca
ans =

1

Within the axes, the Line primitive was used to create the plot. This can be refer-

enced using the dot operator twice. The variable curfig stores the handle of the
current figure; its Children property stores the current axes, and the Children

property of the axes is the Line primitive.

>> curfig.Children.Children
ans=

Line with properties:

Color: [0 1 1]
LineStyle: '–'
LineWidth: 0.5000

Marker: 'none'
MarkerSize: 6

MarkerFaceColor: 'none'
XData: [1x63 double]
YData: [1x63 double]
ZData: [1x0 double]

Show all properties

Note that the Color property was specified in the original plot.

Thus, the hierarchy is: Figure Window –> Axes –> Line.

37711.2 Using Objects with Graphics and Plot Properties

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

11.3 USER-DEFINED CLASSES AND OBJECTS

There are many examples of built-in classes in MATLAB, including the handle

class used by plot functions. It is also possible for users to define classes, and
then create or instantiate objects of those classes.

11.3.1 Class Definitions

Classes are defined using the keyword classdef. The class definition is orga-

nized by blocks, and typically at a minimum contains properties (the data)

using the keyword properties and methods (the functions that act on the data)
using the keywordmethods. One special case of a method is a constructor func-

tion that initializes the properties. Class definitions are stored in code files with

the same name as the class; the constructor function also is given the
same name.

Every block begins with the keyword and ends with end. The organization of a

basic class definition, in which there are two properties and onemethod, which

is a constructor function, follows.

MyClassName.m

classdef MyClassName

properties
prop1
prop2

end

methods

% Constructor function
function obj=MyClassName(val1, val2)

obj.prop1=val1;
obj.prop2=val2;

end

% Other methods that operate on properties

end
end

The class definition is stored in a code file with the same name as the class.

Within the classdef block, there are blocks for properties and methods. In

the properties block, the names of all properties are given. It is also possible
to assign default values for the properties using the assignment operator; if this

is not done, MATLAB initializes each to the empty vector.

The constructor function must have the same name as the class. It only returns

one output argument, which is the initialized object. If no constructor function

is defined, MATLAB creates one that uses the default values given in the

378 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

properties definition, if any, or empty vectors if not. It is best to write the con-

structor function to allow for the case in which no input arguments are passed,
using nargin to check to determine how many arguments were passed to the

function.

The following is a simple class definition in which there are two properties: x,

which is not initialized so the default value is the empty vector and y, which is
initialized to 33. The class has one constructor function; if two arguments are

passed to it, they are stored in the two properties. If not, the default values are
used.

SimpleClass.m

classdef SimpleClass

properties
x
y = 33;

end

methods

function obj = SimpleClass(val1, val2)
if nargin == 2

obj.x = val1;
obj.y = val2;

end
end

end

end

Once the class has been defined, objects can be created or instantiated by

assigning the name of the class. For example, the following instantiates an

object named myobject; because the output is not suppressed, the property
names and their values are shown:

>> myobject=SimpleClass
myobject=

SimpleClass with properties:

x: []
y: 33

Instantiating this object automatically calls the constructor function; because
no arguments were passed, the default values were used for the properties.

In the following example, input arguments are passed to the constructor.

>> newobject=SimpleClass(4, 22)
newobject=

SimpleClass with properties:

x: 4
y: 22

37911.3 User-Defined Classes and Objects

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The properties and methods can be seen using the properties and methods

functions:

>> properties(myobject)
Properties for class SimpleClass:

x
y

>> methods(myobject)

Methods for class SimpleClass:

SimpleClass

The properties can be accessed using the dot operator to either display or mod-

ify their values.

>> myobject.x=11
myobject=

SimpleClass with properties:

x: 11
y: 33

Wewill nowmodify the class definition, making the constructor functionmore

general, and adding a new method.

SimpleClassii.m

classdef SimpleClassii

properties
x
y=33;

end

methods
function obj=SimpleClassii(varargin)

if nargin==0
obj.x=0;

elseif nargin==1
obj.x=varargin{1};

else
obj.x=varargin{1};
obj.y=varargin{2};

end
end

function outarg=ordMethod(obj, arg1)
outarg=obj.x+obj.y+arg1;

end
end

end

In the class SimpleClassii, there are twomethods. The constructor, which has the

same name as the class, is general in that it accepts any number of input

380 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

arguments. If no arguments are passed, the property x is initialized to 0 (y is not

initialized since a default value was already assigned to it in the properties
block). If only one input argument is passed, it is assumed to be the value of

the property x, and is assigned to obj.x. If two or more input arguments are

passed, the first is the value of x and the second is the value to be stored in
y. Although it is best to use nargin and varargin to allow for any number of

input arguments, future examples assume the correct number of input argu-

ments for simplicity. If the properties are to be a certain type, the constructor
function should also check and ensure that the input arguments are the correct

type and either typecast them or change them if not.

The following examples demonstrate instantiating two objects of the class
SimpleClassii.

>> objA=SimpleClassii
objA=

SimpleClassii with properties:

x: 0
y: 33

>> objB=SimpleClassii(4, 9)
objB=

SimpleClassii with properties:

x: 4
y: 9

Every time an object is instantiated, the constructor function is automatically
called. Therefore, there are two ways of initializing properties: in the property

definition block, and by passing values to the constructor method.

The second method in SimpleClassii is an example of an ordinary method. The

method ordMethod adds the values of the input argument, the x property, and

the y property together and returns the result. When calling this method, the
object to be used must always be passed to the method, which is why there

are two input arguments in the function header: the object and the value to

be summed with the properties.

There are twoways in which themethod ordMethod can be called. One way is by
explicitly passing the object to be used:

QUICK QUESTION!

What would the value of the properties be for the following:

>> ob=SimpleClassii(1,–6, 7, 200)

Answer: x:1
y:–6

The last two arguments to the constructor were ignored.

38111.3 User-Defined Classes and Objects

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> resultA=ordMethod(objA, 5)
resultA=

38

The other way is by using the dot operator with the object, as follows:

>> resultB=objB.ordMethod(11)
resultB=

24

Both of these methods are identical in their effect; they both pass the object to

be used and the value to be added. Notice that, regardless of how the method is

called, there are still two input arguments in the function header: one for the
object (whether it is passed through the argument list or by using the dot oper-

ator) and one for the value to be added. Although it is common for the object to

be the first input argument, it is not necessary to do so.

The ismethod function, introduced in R2020a, can be used to determine

whether a character vector (or string) is the name of a method for a particular
object.

11.3.2 Overloading Functions and Operators

By default, MATLAB creates an assignment operator for classes, which allows

one object of the class to be assigned to another. This performs memberwise

assignment, which means it assigns each property individually. Thus, one
object can be assigned to another using the assignment operator. Other oper-

ators, however, are not defined automatically for classes. Instead, the program-

mer has the power to define operators. For example, what would it mean for
one object to be less than another? The programmer has the power to define

“<” any way they want! Of course, it makes sense for the operator to be defined

in a way that is consistent with the definition for MATLAB classes. For example,
it makes sense to define the equality operator to determine whether two objects

are equal to each other or not (and that would typically be memberwise). An

error message will be thrown if an operator is used that has not been defined.

Recall that all operators have a functional form. For example, the expression
a+b canalsobewrittenasplus(a,b).Whendefininganoperator for a user-defined
class, amember function is defined with the function name for the operator, e.g.,

plus. This is called overloading, as it gives another definition for an existing func-

tion.Which function isused (thebuilt-inoruser-defined)dependson the context,
which means the types of the arguments that are used in the expression.

In addition to the operator functions, it is also possible to overload other

functions for a class. For example, one function that is frequently overloaded

is the function disp. By creating a class member function disp, one can custom-
ize the way in which object properties are displayed. One aspect of overloading

the disp function is that when the assignment operator is used to assign a value

382 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

to an object or an object property, and the semicolon is not used to suppress the

output, the disp function is automatically called to display the properties;
therefore, the format of the output that is created in the overloaded disp func-

tion will be seen with every unsuppressed assignment.

To illustrate some of these concepts, a class to represent a rectangle, Rectangle,

will be developed. There are two properties, for the length andwidth of the rect-

angle. There are four methods:

n a constructor function, or method, Rectangle

n an ordinary method rectarea that calculates the area of a Rectangle object
n two overloaded functions:

n disp, which displays the properties in a formatted sentence

n lt, which is the function for the less than operator

What does it mean for one Rectangle object to be less than another? In the fol-
lowing definition, the lt function returns true if the area of one Rectangle object

is less than another. However, this is our choice. Depending on the application,

it may make more sense to define it using just the length, just the width, or per-
haps based on the perimeters of the Rectangle objects. This is a cool thing about

classes; the programmer can define these operator functions in any way desired.

Rectangle.m

classdef Rectangle

properties
len=0;
width=0;

end

methods

function obj = Rectangle(l, w)
if nargin == 2

obj.len=l;
obj.width=w;

end
end

function outarg=rectarea(obj)
outarg=obj.len*obj.width;

end

function disp(obj)
fprintf('The rectangle has length %.2f', obj.len)
fprintf(' and width %.2f\n', obj.width)

end

function out=lt(obja, objb)
out=rectarea(obja) < rectarea(objb);

end
end

end

38311.3 User-Defined Classes and Objects

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

For simplicity, the constructor only checks for two input arguments; it does not

check for a variable number of arguments, nor does it verify the types of the
input arguments. If nargin is not 2, the default values from the properties block

are used.

Here are examples of instantiating Rectangle objects, both using the construc-

tor function and using the assignment operator that MATLAB provides for
classes:

>> rect1=Rectangle(3,5)
rect1=
The rectangle has length 3.00 and width 5.00
>> rect2=rect1;
>> rect2.width=11
rect2=
The rectangle has length 3.00 and width 11.00

Notice that the overloaded disp function in the class definition is used for dis-

playing the objects when the output is not suppressed. It can also be called
explicitly.

>> rect1.disp
The rectangle has length 3.00 and width 5.00

As the lt operator was overloaded, it can be used to compare Rectangle objects.

>> rect1 < rect2
ans =

1

Other operators, for example, gt (greater than), however, have not been defined

within the class so they cannot be used, and MATLAB will throw an error
message.

>> rect1 > rect2
Undefined operator '>' for input arguments of

type 'Rectangle'.

Care must be taken when overloading operator functions. The function in the
class definition takes precedence over the built-in function, when objects of the

class are used in the expression.

384 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

11.3.3 Inheritance and the Handle Class

Inheritance is when one class is derived from another. The initial class is called

the superclass and the derived class is called the subclass.A subclass is a new class
that has the properties and methods of the superclass, plus it can have its own

properties and methods. The methods in a subclass can override methods from

the superclass if they have the same name.

11.3.3.1 Subclasses
The syntax for the subclass definition includes the “<” operator followed by the

name of the superclass in the first line of the code file. (Note: this is not the less
than operator!) The subclass inherits all of the properties and methods of the

superclass, and then its own properties and methods can be added. For exam-

ple, a subclass might inherit two properties from the superclass, and then also
define one of its own. The constructor function would initialize all three prop-

erties, as seen in the example that follows.

QUICK QUESTION!

Could wemix types in the expression? For example, what if we

wanted to know whether the area of rect1 was less than 20,

could we use the expression

rect1 < 20 ?

Answer: No, not with the overloaded lt function as written,

which assumes that both arguments are Rectangle objects.

The following error message would be generated:

>> rect1 < 20
Undefined function 'rectarea' for input

arguments of type 'double'.
Error in < (line 30)
out=rectarea(obja) < rectarea(objb);

However, it is possible to rewrite the function to handle this

case. In the following modified version, the type of each of

the input arguments is checked. If the argument is not a Rect-

angle object, the type is checked to see whether it is the type

double. If it is, then the input argument is modified to be a

rectangle with the number specified as the length and a width

of 1 (so the area will be calculated correctly). Otherwise, the

argument is simply typecast to be a Rectangle object so that

no error is thrown (another option would be to print an error

message).

function out=lt(inp1, inp2)
if �isa(inp1,'Rectangle')

if isa(inp1, 'double')
inp1=Rectangle(inp1,1);

else
inp1=Rectangle;

end
end
if �isa(inp2,'Rectangle')

if isa(inp2, 'double')
inp2=Rectangle(inp2,1);

else
inp2=Rectangle;

end
end
out=rectarea(inp1) < rectarea(inp2);

end

With the modified function, expressions mixing Rectangle

objects and double values can now be used:

>> rect1 < 20
ans =

1

38511.3 User-Defined Classes and Objects

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

MySubclass.m

classdef MySubclass < Superclass

properties
prop3

end

methods

% Constructor function
function obj=MySubclass(val1, val2,val3)

obj@Superclass(val1,val2)
obj.prop3=val3;

end

% Other methods that operate on properties

end
end

The first line in the constructor uses the syntax obj@Superclass in order to call

the constructor method of the super class to initialize the two properties

defined in the super class.

For example, our class Rectangle can be a superclass for a subclass Box. The sub-
class Box inherits the len andwidth properties and has its own property height. In

the following class definition for Box, there is also a constructor function named

Box and an ordinary method to calculate the volume of a Box object.

Box.m

classdef Box < Rectangle

properties
height=0;

end

methods
function obj=Box(l,w,h)

if nargin < 3
l=0;
w=0;
h=0;

end
obj@Rectangle(l,w)
obj.height=h;

end

function out=calcvol(obj)
out=obj.len*obj.width*obj.height;

end
end

end

386 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The values of all three properties should be passed to the constructor function.

If not, the input arguments are all assigned default values. Next, the Box con-
structor calls the Rectangle constructor to initialize the len and width properties.

The syntax for the call to the Rectangle constructor is:

obj@Rectangle(l,w)

Note that this call to the Rectangle constructor must be executed first, before

other references to the object properties. Finally, the constructor initializes
the height property.

The following is an example of instantiating a Box object. Notice that since the

result of the assignment is not suppressed, the disp function from the Rectangle
class is called. All three of the properties were initialized, but only the length

and width were displayed.

>> mybox=Box(2,5,8)
mybox =
The rectangle has length 2.00 and width 5.00
>> mybox.height
ans =

8

To remedy this, we would have to overload the disp function again within the

Box class.

function disp(obj)
fprintf('The box has a length of %.2f,',obj.len)
fprintf(' width %.2f\nand height %.2f\n',...

obj.width,obj.height)
end

>> mybox=Box(2,5,8)
mybox=
The box has a length of 2.00, width 5.00
and height 8.00

11.3.3.2 Value and Handle Classes
There are two types of classes inMATLAB: value classes and handle classes. Value

classes are the default; so far, the classes that have been demonstrated have all
been value classes. Handle classes are subclasses that are derived from the

abstract class handle, which is a built-in class. The class definition for a handle

class begins with:

classdef MyHandclass < handle

There is a very fundamental difference between value classes and handle classes.
With value classes, if one object is copied to another, they are completely inde-

pendent; changing one does not affect the other. With handle classes, on the

other hand, if one handle object is copied to another it does not copy the data;
instead, it creates a reference to the same data. All objects refer to the same data

(the properties).

38711.3 User-Defined Classes and Objects

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

User-defined classes can be either value classes or handle classes. Built-in classes

are also either value classes or handle classes. For example, built-in numeric
types such as double are value classes, whereas plot objects are handle objects.

Because double is a value class, we can assign one double variable to another –
and then changing the value of one does not affect the other.

>> num = 33;
>> value = num;
>> value = value+4
value =

37
>> num
num =

33

On the other hand, plot object handles are handle objects. When assigning one

plot handle variable to another, they both refer to the same plot.

>> x=0: 0.1 : pi;
>> plothan=plot(x,sin(x));
>> handleb=plothan;

Both variables plothan and handleb refer to the same plot; they are not different

plots. As a result, a property such as the line width could be changed by either

>> plothan.LineWidth=3;

or

>> handleb.LineWidth=3;

Either of these would accomplish the same thing, changing the line width in the

one plot to 3.

As an example of a user-defined handle class, let us modify the value class Rect-

angle to be a handle class calledHandleRect (and simplify a bit by not overload-
ing the lt function).

HandleRect.m

classdef HandleRect < handle

properties
len=0;
width=0;

end

methods

function obj=HandleRect(l, w)
if nargin== 2

obj.len=l;
obj.width=w;

end
end

388 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

function outarg=rectarea(obj)
outarg=obj.len*obj.width;

end

function disp(obj)
fprintf('The rectangle has length %.2f', obj.len)
fprintf(' and width %.2f\n', obj.width)

end
end

end

By instantiating an object, we can find the properties and methods as follows.

>> HRectangle=HandleRect(3,5)
HRectangle=
The rectangle has length 3.00 and width 5.00
>> properties(HRectangle)
Properties for class HandleRect:

len
width

>> methods(HRectangle)

Methods for class HandleRect:

HandleRect disp rectarea

Methods of HandleRect inherited from handle.

By clicking on the underlinedMethods link, the inheritedmethods can be seen.

Methods for class handle:

addlistener findobj gt lt listener
delete findprop isvalid ne
eq ge le notify

Notice that these inherited methods include overloaded operator functions for

the operators >, <, >=, <=,==, and �=. Because the assignment operator is

defined automatically for all classes, and the equality operator is overloaded
for handle classes, we can assign oneHandleRect object to another and then ver-

ify that they are identical.

>> HRecA=HandleRect(2,7.5)
HRecA=
The rectangle has length 2.00 and width 7.50
>> HRecB=HRecA
HRecB=
The rectangle has length 2.00 and width 7.50
>> HRecA== HRecB
ans =

1

38911.3 User-Defined Classes and Objects

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

However, if we then create another object HRecC with the same properties as

HRecA and HRecB, HRecC is not equal to either HRecA or HRecB.

>> HRecC=HandleRect(2,7.5)
HRecC=
The rectangle has length 2.00 and width 7.50
>> HRecA== HRecC
ans =

0

This illustrates one of the important concepts about handle classes: assigning

one object to another does not make a new copy; instead, it creates another ref-

erence to the same object. However, instantiating an object by calling the con-
structor function does create a new object, even if it happens to have the same

properties as other object(s). The following is an illustration of the threeHand-

leRect objects that have been created:

HRecA HRecB HRecC
� � �

len 2 len 2
width 7.5 width 7.5

Because both HRecA and HRecB refer to the same object, changing a property

using one of the instances will change that property for bothHRecA andHRecB
but will not affect HRecC.

>> HRecA.len=11;
>> HRecB.len
ans =

11
>> HRecC.len
ans =

2

PRACTICE 11.3

The gt, lt, le, ge functions are overloaded in handle classes for the operators >, <, <¼, and >¼
respectively. Create a handle class withmultiple properties, instantiate at least two objects of this

class, and design experiments with the objects to determine whether these overloaded operators

are implemented memberwise or not.

QUICK QUESTION!

What would happen if the value of HRecA.len was changed to

6?

Answer:

>> HRecA.len=6;
>> HRecA

HRecA=
The rectangle has length 6.00 and width 7.50
>> HRecB
HRecB=
The rectangle has length 6.00 and width 7.50

390 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Because handle class objects are references to the locations in which the objects

are stored, there are differences betweenhandle and value classes in theways that

objects are passed to functions, and in themanner inwhich functions can change
objects.Wewill create two simple classes, a value class valClass, andahandle class

hanClass, to illustrate the differences. Both will have just one double property x.

There will be four methods; for simplicity, none of them error-check:

n a simple constructor
n a function add that receives two objects, adds the x properties together,

and returns an object in which the x property is the sum of the two inputs

n a function timestwo that receives one object, and returns an object in which
the property is the property of the input argument multiplied by two

n a function timesthree that receives one object, multiplies its property by

three but does not return anything

The constructor and add functions behave similarly in the value and handle

classes. In both classes, the add function receives two input arguments which
are objects and returns an object which is distinct from the input objects.

The other two functions, however, behave differently in valClass and hanClass.

We will first examine the value class.

valClass.m

classdef valClass

properties
x=0;

end

methods
function obj=valClass(in)

if nargin== 1
obj.x=in;

end
end

function out=add(obja, objb)
out=valClass(obja.x+objb.x);

end

function outobj=timestwo(inobj)
outobj=valClass(inobj.x*2);

end

function timesthree(obj)
% Note: this function does not
% accomplish anything; MATLAB
% flags the following line
obj.x=obj.x*3;

end
end

end

Note

that the add and timestwo

functions call the valClass

constructor to make the

output a valClass object.

39111.3 User-Defined Classes and Objects

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Instantiating two objects and calling the timestwo function create the following

result.

>> va=valClass(3);
>> vb=valClass(5);
>> vmult2=timestwo(vb)
vmult2=

valClass with properties:

x: 10
>> vb
vb =

valClass with properties:

x: 5

Note that in the base workspace, initially there are two objects va and vb.
While the function is executing, the function’s workspace has the input argu-

ment inobj and output argument outobj. These are all separate objects. The

value of the object va was passed to the input object inobj, and a separate out-
put argument is created in the function, which is then returned to the object

vmult2 in the assignment statement. At this point, the function’s workspace

would no longer exist but the base workspace would now have va, vb, and
vmult.

Before the function call to timestwo, we have:

Base workspace:

va vb
x: 3 x: 5

While the timestwo function is executing, we have:

Base workspace: Function workspace:

va vb inobj outobj
x: 3 x: 5 x: 5 x: 10

After timestwo has stopped executing and has returned the object, we have:

Base workspace:

va vb vmult2
x: 3 x: 5 x: 10

Now let us examine the behavior of the timesthree function, which does not

return any output argument, so the call cannot occur in an assignment
statement.

>> clear
>> va=valClass(3);
>> vb=valClass(5);
>> timesthree(vb)

392 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> va
va =

valClass with properties:

x: 3
>> vb
vb =

valClass with properties:

x: 5

Before the function call to timesthree, we have:

Base workspace:

va vb
x: 3 x: 5

Initially in the timesthree function, we have:

Base workspace: Function workspace:

va vb obj
x: 3 x: 5 x: 5

Once the assignment statement in the timesthree function has executed, we

have:

Base workspace: Function workspace:

va vb obj
x: 3 x: 5 x: 15

After timesthree has stopped executing, we have:

Base workspace:

va vb
x: 3 x: 5

Within the body of the function, the value of the input argument was mod-

ified. However, that value was not returned. It was also a separate object from
the two objects in the base workspace. Therefore, the function accomplished

nothing, which is why MATLAB flags it. It appears to behave as though it is a

handle class method, as we will see next.

The next example is similar but is a handle class rather than a value class. Let
us examine the timestwo and timesthree functions in the following handle

class.

39311.3 User-Defined Classes and Objects

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

hanClass.m

classdef hanClass < handle

properties
x=0;

end

methods

function obj=hanClass(in)
if nargin== 1

obj.x=in;
end

end

function out=add(obja, objb)
out=hanClass(obja.x+objb.x);

end

function outobj=timestwo(inobj)
outobj=hanClass(inobj.x*2);

end

function timesthree(obj)
obj.x=obj.x*3;

end
end

end

Instantiating two objects and calling the timestwo function create the following

result.

>> ha=hanClass(12);
>> hb=hanClass(7);
>> hmult2=timestwo(hb)
hmult2=

hanClass with properties:

x: 14
>> hb
hb =

hanClass with properties:

x: 7
>> ha
ha =

hanClass with properties:

x: 12

Note that in the base workspace, there are two objects, ha and hb. While the

function is executing, there are also the input argument inobj and output argu-

ment outobj. The value of the object hb, which is a reference to the object, was
passed to the input object inobj, which means that inobj refers to the same

object. Within the body of the function, a separate object outobj is created.

394 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Before the function call to timestwo, we have:

Base workspace:

ha hb
� �

x: 12 x: 7

While the timestwo function is executing, we have:

Base workspace: Function workspace:

ha hb inobj outobj
|

|--------
� � � �
x: 12 x: 7 x: 14

After timestwo has stopped executing and has returned the object, we have:

ha hb hmult2
� � �
x: 12 x: 7 x: 14

Now let us examine the behavior of the timesthree function. As with the value
class, this function does not return any output argument, so calls to it cannot

occur in an assignment statement. However, this function does accomplish

something; it modifies the object passed as an input argument.

>> clear
>> ha=hanClass(12);
>> hb=hanClass(7);
>> timesthree(hb)
>> ha
ha =

hanClass with properties:

x: 12
>> hb
hb =

hanClass with properties:

x: 21

Before the function call to timesthree, we have:

Base workspace:

ha hb
� �

x: 12 x: 7

39511.3 User-Defined Classes and Objects

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

While the timesthree function begins, we have:

Base workspace: Function workspace:

ha hb obj
|

� � �
x: 12 x: 7

Once the timesthree function executes its assignment statement, we have:

Base workspace: Function workspace:

ha hb obj
|

� � �
x: 12 x: 21

After timesthree has stopped executing and has returned the object, we have:

Base workspace:

ha hb
� �
x: 12 x: 21

Thus, because handle class objects store references, passing a handle class object

to a function can allow the function to modify its properties (without returning
anything). This cannot happen with value class objects.

Notice that errors will occur for both the value and handle classes if the time-

sthree functions are called in assignment statements because these functions do

not return any values.

>> vmult3=timesthree(vb)
Error using valClass/timesthree
Too many output arguments.

>> hmult3=timesthree(hb)
Error using hanClass/timesthree
Too many output arguments.

11.3.4 Property Definition Blocks

The behaviors of, and access to, classes, properties, and methods can be con-

trolled by what are called attributes. The attributes are specified in parentheses
in the first line of any block.

There are several attributes that relate to properties. One of the most important

attributes is access to the properties. There are three types of access to properties:

n public: access is possible from anywhere; this is the default

n private: access is possible only by methods in this class

396 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n protected: access is possible only by methods in this class or any of its

subclasses

The attributes that control the access to properties are:

n GetAccess: read access, which means the ability to determine the values
of properties

n SetAccess: write access, which means the ability to initialize or modify
values of properties

n Access: both read and write access

In the case in which different properties are to have different attributes, multi-

ple property definition blocks can be defined. So far, because we have not spec-
ified, both the read and write access to all properties in our class definitions

have been public. This means that we have been able to see, and to modify,

the values of the properties for example from the Command Window.

The following is an example of a value class in which one property, num, is pub-
lic, and the other property, word, has public GetAccess but protected SetAccess.

valAttributes.m

classdef valAttributes

properties
num = 0;

end

properties (SetAccess=protected)
word= 'hello';

end

methods
function obj = valAttributes(n,w)

if nargin == 2
obj.num = n;
obj.word = w;

end
end

end
end

Once an object has been instantiated using the constructor, the property num

can be queried and modified (because Access is public by default).

>> valA=valAttributes(3, 'hi')
valA=

valAttributes with properties:

num: 3
word: 'hi'

>> valA.num
ans=

3

39711.3 User-Defined Classes and Objects

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> valA.num=14
valA=

valAttributes with properties:

num: 14
word: 'hi'

The property word, however, can be queried (because GetAccess is public by
default) but it cannot be changed (because SetAccess was set to protected). Only

methods within the class (or subclasses if defined) can change the word
property.

>> valA.word
ans =
hi

>> valA.word= 'ciao'
You cannot set the read-only property 'word' of valAttributes.

This is a very useful aspect of objects. Protecting objects by only allowing class
methods tomodify them is a very powerful tool. One example of this is to error-

check property values.

Although the access attributes are the most commonly used, there are other
attributes that can be set (e.g., Constant for values that are to be constant for

all objects). A table of all attributes can be found by searching the documenta-

tion for Property Attributes.

11.3.5 Method Types

There are different types of methods that can be defined in class definitions; we

have already seen constructor functions, ordinary methods, and overloading

functions. As with properties, there are also attributes that control the behavior
of methods.

11.3.5.1 Constructor Functions
Aswehave seen, all classes shouldhave constructor functions,which initialize the

properties in an object. If a class definition does not include a constructor,
MATLABwill initialize theproperties toeitherdefault values provided in theprop-

erty definition block, or to empty vectors. Constructor functions always have the

same name as the class, and return only the initialized object; this is true for both
value and handle classes. Constructor functions should be general and should

allowfor thecase inwhichnoinputargumentsarepassedbycreatingdefaultprop-

erty values. To be truly general, the types of the input arguments should also be
checked tomake sure that theyare the correct types for theproperties.Overloading

the set.PropertyName functions for all properties allows for even more control

over all functions that set the properties, including the constructor function.

If the class being defined is a subclass, the constructor function of the superclass

must be called to initialize its properties. MATLAB automaticallymakes implicit

398 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

calls to the superclass constructors using no arguments when the class is defined

as a subclass in the class definition line. It is also possible to explicitly call the
constructors and pass arguments to be the property values; this is necessary if

the superclass constructors require that input arguments be passed.

Some languages have what are called copy constructor functions, which allow

an object to be constructed by copying all properties of one object into
another. MATLAB does not have a copy constructor, but it would be possible

to write a constructor function so that it checks to see whether the input
argument is an object of the class type, and if so, copy the properties. The

beginning of a simplified version of such a constructor for a class MyClass

might be:

MyClass.m

function obj=MyClass(varargin)
if nargin == 1

val = varargin{1};
if isa(val, 'MyClass')

% Copy all properties
obj.Prop=val.Prop;

else
% etc.

end
end
end

11.3.5.2 Access Methods
MATLAB has special access methods that allow you to query a property and to

assign a value to a property. These methods have special names that include the

name of the property:

get.PropertyName
set.PropertyName

These methods cannot be called directly, and they do not show in the list of

functions returned by the methods function. Instead, they are automatically

called whenever a property is queried or an attempt is made to assign a value
to a property. They can, however, be overloaded.

One reason to overload the set.PropertyName method is to be able to error-

check to make sure that only correct values are being assigned to a property.

For example, the following is a simple value class in which the property is a
grade that should be in the inclusive range from 0 to 100; the set.grade function

ensures this.

39911.3 User-Defined Classes and Objects

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

valSet.m

classdef valSet
properties

grade=0;
end

methods

function obj=valSet(in)
if nargin== 1

obj.grade=in;
end

end

function obj=set.grade(obj,val)
if val >= 0 && val <= 100

obj.grade=val;
else

error('Grade not in range')
end

end
end

end

The set.grade function restricts values for the grade property to be in the correct

range, both when instantiating objects and when attempting to modify an
object. Note that the input and output argument names for the object must

be the same. The error function throws an error message.

>> valobj=valSet(98)
valobj=

valSet with properties:

grade: 98
>> badobj=valSet(105)
Error using valSet/set.grade (line 18)
Grade not in range
Error in valSet (line 10)

obj.grade=in;
>> valobj.grade=99
valobj=

valSet with properties:

grade: 99
>> valobj.grade=-5
Error using valSet/set.grade (line 18)
Grade not in range

The set.grade function would be slightly different in a handle class because the

function can modify properties of an object without returning the object. An
equivalent example for a handle class follows; note that the function does

not return any output argument.

400 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

hanSet.m

classdef hanSet < handle
properties

grade=0;
end

methods

function obj=hanSet(in)
if nargin == 1

obj.grade=in;
end

end

function set.grade(obj,val)
if val >= 0 && val <= 100

obj.grade=val;
else

error('Grade not in range')
end

end
end

end

Note that the get and set method blocks cannot have any attributes.

11.3.5.3 Method Attributes
As with property attributes, method attributes are defined in parentheses in

the first line of the method block. In the case in which different methods

are to have different attributes, multiple method definition blocks can be
defined.

There are several attributes that relate to methods. These include Access, which

controls fromwhere the method can be called. There are three types of access to
methods:

n public: access is possible from anywhere; this is the default
n private: access is possible only by methods in this class

n protected: access is possible only by methods in this class or any of its

subclasses

All of the methods in the examples shown thus far have been public. This

means, for example, that we have been able to call our class methods from
the Command Window. It is very common, however, to restrict access so that

only methods within the class itself (or, any subclasses) can call other

methods.

Besides Access, other method attributes include the following, all of which are

the type logical and have a default value of false.

40111.3 User-Defined Classes and Objects

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n Abstract: If true, there is no implementation of the method

n Hidden: If true, the method is not seen in lists of methods

n Sealed: If true, the method cannot be redefined in a subclass
n Static: If true, the method is a static method which means that it is not

called by any particular object; static methods are the same for all objects
in the class

Static methods are not associated with any object. One reason to have a static
method is to perform calculations that are typical for the class (e.g., conversion

of units). The following is a simple example.

StatClass.m

classdef StatClass
methods (Static)

function out=statex(in)
out=in*10;

end
end

end

As static methods are not associated with any instantiation of the class, they are

therefore called with the name of the class, not by any object.

>> StatClass.statex(4)

ans =
40

11.3.5.4 Destructor Functions
Just as constructor functions create objects, destructor functions destroy objects.

In MATLAB, destructor functions are optional. If a destructor function is
defined within a class, this is accomplished by overloading the delete function.

There are specific rules that make an overloaded delete function a destructor

function: the function must have just one input argument, which is an object
of the class, and it must not have any output arguments. Also, it cannot have the

value true for the attributes Sealed, Static, or Abstract. The reason for having a

class destructor function is to be able to “clean up”. For example, if the class
opens a file, the destructor function might make sure that the file is closed

properly.

11.3.6 Events and Listeners

In addition to the properties and methods blocks that are normally in a class

definition, handle classes (but not value classes) can also have an events block.

Events are some type of action that takes place; event-driven programming is
when an event triggers an action. In handle classes in MATLAB, there are three

main concepts:

402 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n event: an action, such as changing the value of a property or the user

clicking the mouse

n listener: something that detects an event and initiates an action based on it
n callback: a function that is called by the listener as a result of the event

There are two methods defined in the handle class that are used with events:

n notify: notifies listener(s) when an event has occurred
n addlistener: adds a listener to an object, so that it will know when an

event has occurred

Examples of these conceptswill beprovided later in the sectiononGraphicalUser

Interfaces (GUIs). GUIs are graphical objects that the user manipulates (e.g., a
push button). When the user pushes a button, for example, that is an event that

can cause a callback function to be called to perform a specified operation.

11.3.7 Advantages of Classes

There are many advantages to using OOP and instantiating objects versus using

procedural programming and data structures such as structs. Creating one’s

own classes offers more control over behaviors. Because operators and other
functions can be overloaded, programmers can define them precisely as

needed. Also, by redefining the set.PropertyName methods, the range of values

that can be assigned is strictly controlled.

Another advantage of objects is that when using struct.field, if a fieldname is
not spelled correctly in an assignment statement, for example,

struct.feild=value;

this would just create a new field with the incorrect fieldname, and add it to the

structure! If this was attempted with a class object, however, it would throw an

error.

Data Science and Machine Learning Supplement
Range and Quartiles
The range of a data set is the difference between the maximum and minimum
values. In MATLAB, the function range will return this value, and the bounds

function returns the minimum and maximum values. For example, for the vec-

tor svec:

svec =
44 236 248 285 290 355 401 447

>> range(svec)
ans =

403

40311.3 User-Defined Classes and Objects

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> [l, h]=bounds(svec)
l =

44
h =

447

Quartiles are points that divide an ordered data set into four groups. The second

quartile, Q2, is the median of the data set. It cuts the data set in half. The first
quartile, Q1, cuts the lower half of the data set in half. Q3 cuts the upper half of

the data set in half. For sorted vectors that have an even number of values, this is

straightforward. However, for vectors with an odd number of values, there are
several possibilities: either calculate without the median, with the median in

both halves, or the average of the above two methods (this is the method used

byMATLAB). The interquartile range is defined asQ3 –Q1;MATLAB has a func-
tion iqr to compute this.

Similarly, percentiles are points that divide an ordered set into 100 groups. The

function prctile calculates these. For example, the 50th percentile is the same as

the median:

>> prctile(svec,50)== median(svec)
ans =

1

Quantiles are also points that divide a sorted set but are referenced by fractions.

There is a quantile function:

>> iqr(svec)
ans =

136
>> quantile(svec, 0.75)=quantile(svec, 0.25)
ans =

136
>> quantile(svec, 0.5)== median(svec)
ans =

logical
1

>> quantile(svec, 0.6)== prctile(svec, 60)
ans =

logical
1

Data Visualization: Using Plot Properties
Data visualization is very important in ML, and we have seen in this chapter
that by storing handles of plot objects, their properties can be queried and

modified. For example, the following script simulates a data set as the vector

svec from above, and computes the values of Q1, Q2, and Q3. It plots the
data points, and straight lines to show the quartiles using the yline function.

Q2 = median(svec);
Q1 = quantile(svec, 0.25);

404 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Q3 = quantile(svec, 0.75);
IQR = iqr(svec);
qp = plot(svec, '*');
ylq1 = yline(Q1, 'Label', 'Q1');
ylq2 = yline(Q2, 'Label', 'Q2');
ylq3 = yline(Q3, 'Label', 'Q3');

This brings up the Figure Window shown in Fig. 11.2. By storing the handles of

the plot objects in variables, the properties can be manipulated. For example,
we canmake the line for Q2wider than the others, then get the current axes and

put the x axis location on top instead of on bottom:

>> ylq2.LineWidth=3;
>> gh=gca;
>> gh.XAxisLocation= 'top';

n Explore Other Interesting Features

Investigate creating a directory for a class so that not all methods have to be

in the same file as the class definition.

Investigate the Constant attribute.

Investigate the built-in class Map, and the Map containers which are
data structures that utilize key/value pairs and allow for indexing using

the keys. n

450
1 2 3 4 5 6 7 8

Q3

Q2

Q1

400

350

300

250

200

150

100

50

0

FIGURE 11.2

X-axis on top.

40511.3 User-Defined Classes and Objects

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

SUMMARY

COMMON PITFALLS

n Confusing value and handle classes

n Not realizing that constructor functions are called automatically when

objects are instantiated

PROGRAMMING STYLE GUIDELINES

n Use the dot notation to reference properties instead of get and set.

n Use nargin to check the number of input arguments to a constructor
function.

n Write constructor functions to allow for no input arguments.

n Call an ordinary method by using the dot operator with the object rather
than explicitly passing the object.

MATLAB Keyword

classdef

MATLAB Functions and Commands

line
groot
get
set

properties
methods
eq
ne

gca
gcf
ismethod

MATLAB Operators

dot operator for object properties and methods

Exercises

1. Create a double variable. Use the functions methods and properties to see

what are available for the class double.

2. Create a simple plot and store the handle in a variable. View the Color property.

3. Create a simple plot, for example, using:

>> y=[3 7 2 9 4 6 2 3];
>> plothan=plot(y)

406 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Create the following character vectors, and then use them to change the Color

and Marker properties to a random color and a randommarker. Also make the

LineWidth 3.

>> somecolors= 'bgrcmyk';
>> somemarkers= '.ox+*sd';

4. Create a bar chart and store the handle in a variable. Experiment with the

BarWidth property. Make the FaceColor yellow and the EdgeColor red.

5. Create a class circleClass that has a property for the radius of the circle and a

constructor function. Make sure that there is a default value for the radius,

either in the properties block or in the constructor. Instantiate an object of your

class and use the methods and properties functions.

6. Add ordinary methods to circleClass to calculate the area and circumference of

the circle.

7. Use ismethod to determine whether or not eq is a method for circleClass.

8. Create a class that will store the price of an item in a store, as well as the sales

tax rate. Write an ordinary method to calculate the total price of the item,

including the tax.

9. Create the Rectangle class from this chapter. Add a function to overload the gt

(greater than) operator. Instantiate at least two objects andmake sure that your

function works.

10. Create a class MyCourse that has properties for a course number, number of

credits, and grade. Overload the disp function to display this information.

11. Construct a class named Money that has five properties for dollars, quarters,

dimes, nickels, and pennies. Include an ordinary function equivtotal that will

calculate and return the equivalent total of the properties in an object (e.g., 5

dollars, 7 quarters, 3 dimes, 0 nickels, and 6 pennies is equivalent to $7.11).
Overload the disp function to display the properties.

12. Write a program that creates a class for complex numbers. A complex number

is a number of the form a+bi, where a is the real part, b is the imaginary part,

and i¼ ffiffiffiffiffiffiffi�1
p

. The class Complex should have properties for the real and

imaginary parts. Overload the disp function to print a complex number.

13. A Student class is being written. There are two properties: an integer student ID

number, and a string final grade for a course. So far, for methods, there is a

constructor function. You are to add two more methods: and overloaded disp

function that displays the student ID and grade, and an overloaded mean

function that changes the grade (whatever it is) to an F (yes, truly mean!). The

format should be as shown here:

>> studa=Student(456,'B+')
studa=
Student 456 has earned a B+
>> studa=mean(studa)
studa=
Student 456 has earned a F

407Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> disp(studa)
Student 456 has earned a F
>>

14. Create a base class Square and then a derived class Cube, similar to the

Rectangle/Box example from the chapter. Include methods to calculate the

area of a square and volume of a cube.

15. Create a base class named Point that has properties for x and y coordinates.

From this class derive a class named Circle having an additional property

named radius. For this derived class, the x and y properties represent the

center coordinates of a circle. The methods of the base class should consist of

a constructor, an area function that returns 0, and a distance function that

returns the distance between two points (sqrt((x2-x1)2+ (y2-y1)2)). The derived

class should have a constructor and an override function named area that

returns the area of a circle. Write a script that has two objects of each class and

calls all of the methods.

16. Take any value class (e.g.,MyCourse or Square) andmake it into a handle class.

What are the differences?

17. Create a class that stores information on a company’s employees. The class

will have properties to store the employee’s name, a 10-digit ID, their

department, and a rating from 0 to 5. Overwrite the set.propertyname function to

check that each property is the correct class and that:

n The employee ID has 10 digits

n The department is one of the following codes: HR (Human Resources), IT

(Information Technology), MK (Marketing), AC (Accounting), or RD (research

and Development)

n The rating is a number from 0 to 5.

The rating should not be accessible to anyone without a password. Overwrite

the set.rating and get.rating functions to prompt the user for a password. Then,

write a function that returns the rating.

18. Create a handle class that logs the times a company’s employees arrive and

leave at work. The class must have the following characteristics. As the

employer, you do not want your employees to access the information stored.

The class will store date, hour, minute, second, and total time as properties.

The constructor function will input the data from the clock function, which

returns a vector with format [year month day hour minute second]. Each time

an employee arrives or leaves, they must call a method LogTime that will store

the new times with the old times. For example, property hour will be

Hour 1

Hour 2

Hour 3

Include a method calcPay that calculates the money owed if it is assumed that

the employees are paid $15/hour. In order to do this, call a separate method

that calculates the time elapsed between the last two time entries. Use the

408 CHAPTER 11: Introduction to Object-Oriented Programming and Graphics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

function etime. This method should only be available to call by calcPay, and the

existence of calcPay should only be known to the coder.

19. You head a team developing a small satellite in competition for a NASA

contract. Your design calls for a central satellite that will deploy sensor nodes.

These nodes must remain within 30 km of the satellite to allow for data

transmission. If they pass out of range, they will use an impulse of thrust

propulsion to move back toward the satellite. Make a Satellite class with the

following properties:

n location: An [X Y Z] vector of coordinates, with the satellite as the origin.

n magnetData: A vector storing magnetic readings.

n nodeAlerts: An empty string to begin with, stores alerts when nodes go out of

range.

Satellite also has the following methods:

n Satellite: The constructor, which sets location to [0 0 0] and magnetData to 0.

n retrieveData: Takes data from a node, extends the magnetData vector.

Then, make the sensorNode class as a subclass of Satellite. It will have the

following properties:

n distance: The magnitude of the distance from the satellite. Presume that a

node’s location comes from on-board, real-time updating GPS (i.e., do not

worry about updating node.location).

n fuel: Sensor nodes begin with 100 kg of fuel.

sensorNode also has the following methods:

n sensorNode: The constructor.

n useThrust: Assume this propels node toward satellite. Each usage

consumes 2 kg of fuel. If the fuel is below 5 kg, send an alert message to the

satellite.

n checkDistance: Check the magnitude of the distance between

n useMagnetometer: Write this as a stub. Have the “magnetometer reading”

be a randomized number in the range 0 to 100.

n sendAlert: set the “nodeAlerts” Satellite property to the string ‘Low fuel’.

First, treat both classes as value classes. Then, adjust your code so that both

are handle classes. Which code is simpler?

Data Science and Machine Learning

20. Create a plot and store the handle in a variable. Store the result from gca in a

variable, also. Use this to examine the properties of the tick marks on the x and

y axes. Using the Help Documentation for MATLAB, search for Axes Properties

to find lists of the axes properties, and the possible values for each. Change the

tick length and the tick direction. Change the rotation of the x tick label.

21. Create a scatter plot of random points. Draw straight lines to show the values

of Q1 and Q3 and put the interquartile range in the title of the plot.

409Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This page intentionally left blank

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

CHAPTER 12

Advanced Plotting Techniques

KEY TERMS

histogram

stem plot

pie chart

area plot

scatter plot

bubble plot

bin

animation

plot properties

primitive objects

core objects

text box

In Chapter 3, we introduced the use of the function plot in the MATLAB® soft-

ware to get simple, two-dimensional (2D) plots of x and y points represented by
two vectors x and y. We have also seen some functions that allow customization

of these plots. In Chapter 11, we introduced handle classes, object handles, and

methods of examining and modifying plot object properties. In this chapter we
will explore other types of plots, ways of customizing plots, and some applica-

tions that combine plotting with functions and file input. Additionally, anima-

tion, three-dimensional (3D) plots, and core graphics primitives will be
introduced.

In the latest versions ofMATLAB, the PLOTS tab can be used to very easily create
advanced plots. The method is to create the variables in which the data are

stored and then select the PLOTS tab. The plot functions that can be used

are then highlighted; simply clicking the mouse on one will plot the data using
that function and open the Figure Window with that plot. For example, by cre-

ating x and y variables, and highlighting them in the Workspace Window, the

2D plot types will become visible. If, instead, x, y, and z variables are
highlighted, the 3D plot types will become available. These are extremely fast

methods for users to create plots in MATLAB. However, as this text focuses on

programming concepts, the programmatic methodologies will be explained in
this chapter.

CONTENTS

12.1 Plot Functions
and
Customizing
Plots412

12.2 3D plots423

12.3 Primitive
Graphics
Objects426

12.4 Plot
Applications
.....................433

12.5 Saving and
Printing
Plots436

Summary 440

Common
Pitfalls440

Prgramming Style
Guidelines440

MATLAB. https://doi.org/10.1016/B978-0-323-91750-6.00012-3

411

Copyright © 2023 Elsevier Inc. All rights reserved.

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

12.1 PLOT FUNCTIONS AND CUSTOMIZING PLOTS

So far, we have used plot to create 2D plots and bar to create bar charts, and we

have seen the use of xline and yline. We have seen how to clear the
Figure Window using clf, and how to create and number Figure Windows using

figure. Labelingplots hasbeen accomplishedusing xlabel, ylabel, title, subtitle,

and legend, and we have also seen how to customize the strings passed to these
functionsusing sprintf. Theaxis function changes the axes fromthedefaults that

wouldbe taken fromthedata in the xand yvectors to thevalues specified. Finally,

the grid andhold toggle functions print grids or not, or lock the current graph in
the Figure Window so that the next plot will be superimposed.

Another function that is very useful with all types of plots is subplot, which

creates a matrix of plots in the current Figure Window, as we have seen in
Chapter 5 (and sgtitle, which puts a title on the Figure Window). The sprintf

function is frequently used to create customized axis labels and titles within the

matrix of plots.

Besides plot and bar, there are many other plot types, such as histograms, stem

plots, pie charts, and area plots, as well as other functions that customize graphs.
Described in this section are some of the other plotting functions.

12.1.1 Bar, Barh, Area, Stem, and Scatter Functions

The functions bar, barh, area, and stem essentially display the same data as the

plot function, but in different forms. The bar function draws a bar chart (as we
have seen before), barh draws a horizontal bar chart, area draws the plot as a

continuous curve and fills in under the curve that is created, and stem draws a

stem plot. A scatter plot, or bubble plot, creates a plot using circle markers, using
scatter.

For example, the following script creates a Figure Window that uses a 2 � 2

subplot to demonstrate four plot types using the same data points (see
Fig. 12.1).

subplottypes.m

% Subplot to show plot types

year=2018:2022;
pop=[0.9 1.4 1.7 1.3 1.8];
subplot(2,2,1)
scatter(year,pop)
title('scatter')
xlabel('Year')
ylabel('Population (mil)')
axis padded
subplot(2,2,2)

412 CHAPTER 12: Advanced Plotting Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

bar(year,pop)
title('bar')
xlabel('Year')
ylabel('Population (mil)')
subplot(2,2,3)
area(year,pop)
title('area')
xlabel('Year')
ylabel('Population (mil)')
subplot(2,2,4)
stem(year,pop)
title('stem')
xlabel('Year')
ylabel('Population (mil)')
axis padded
sgtitle('4 Plot types')

2018 2019 2020 2021 2022

Year

1

1.2

1.4

1.6

1.8

P
op

ul
at

io
n

(m
il)

scatter bar

2018 2019 2020 2021 2022

Year

0

0.5

1

1.5

2

P
op

ul
at

io
n

(m
il)

area

2018 2019 2020 2021 2022

Year

0

0.5

1

1.5

2

P
op

ul
at

io
n

(m
il)

0

0.5

1

1.5

P
op

ul
at

io
n

(m
il)

stem

2018 2019 2020 2021 2022

Year

4 Plot types

FIGURE 12.1

Subplot to display scatter, bar, area, and stem plots.

Note

that the third argument in

the call to the subplot

function is a single index

into the matrix created in

the Figure Window; the

numbering is row wise (in

contrast to the normal

column wise unwinding

that MATLAB uses for

matrices).

41312.1 Plot Functions and Customizing Plots

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

For a matrix, the bar and barh functions will group together the values in each
row. For example:

>> groupages=[8 19 43 25; 35 44 30 45]
groupages=

8 19 43 25
35 44 30 45

>> bar(groupages)
>> xlabel('Group')
>> ylabel('Ages')

produces the plot shown in Fig. 12.2.

QUICK QUESTION!

Could we produce this subplot using a loop?

Answer: Yes, we can store the names of the plots in a cell

array. These names are put in the titles, and also

converted to function handles so that the functions can be

called.

loopsubplot.m

% Demonstrates evaluating plot type names in order to
% use the plot functions and put the names in titles

year = 2018:2022;
pop=[0.9 1.4 1.7 1.3 1.8];
titles = {'scatter', 'bar', 'area', 'stem'};
for i = 1:4

subplot(2,2,i)
fn = str2func(titles{i});
fn(year,pop)
title(titles{i})
xlabel('Year')
ylabel('Population (mil)')

end

QUICK QUESTION!

What are some different options for plotting more than one

graph?

Answer: There are several methods, depending on whether

you want them in one Figure Window superimposed (using

hold on), in a matrix in one Figure Window (using subplot),

or in multiple Figure Windows (using figure(n)).

414 CHAPTER 12: Advanced Plotting Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> bar(groupages,'stacked')
>> xlabel('Group')
>> ylabel('Ages')

1 2
Group

A
ge

s

0

5

10

15

20

25

30

35

40

45

FIGURE 12.2

Data from a matrix in a bar chart.

1 2
Group

0

20

40

60

80

100

120

140

160

A
ge

s

FIGURE 12.3

Stacked bar chart of matrix data.

Note

that MATLAB groups

together the values in the

first row and then in the

second row. It cycles

through colors to distin-

guish the bars. The

“stacked” option will

stack rather than group

the values, so the “y”

value represented by the

top of the bar is the sum

of the values from that

row (shown in Fig. 12.3).

41512.1 Plot Functions and Customizing Plots

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PRACTICE 12.1

Create a file that has two lines with n numbers in each. Use load to read this into a matrix. Then,

use subplot to show the barh and stacked bar charts side by side. Put labels “Groups” for the two

groups and “Values” for the data values on the axes (note the difference between the x and y labels

for these two plot types).

12.1.2 Histograms and Pie Charts

A histogram is a particular type of bar chart that shows the frequency of occur-

rence of values within a vector. Histograms use what are called bins to collect

values that are in given ranges. MATLAB has a function to create a histogram,
histogram. Calling the function with the form histogram(vec) by default takes

the values in the vector vec and puts them into bins; the number of bins is deter-

mined by the histogram function (or histogram(vec,n) will put them into n
bins) and plots this, as shown in Fig. 12.4.

>> quizzes=[10 8 5 10 10 6 9 7 8 10 1 8];
>> histogram(quizzes)
>> xlabel('Grade')
>> ylabel('#')
>> title('Quiz Grades')

In this example, thenumbers range from1to10 in thevector, andthereare10bins

in the range from 1 to 10. The heights of the bins represent the number of values

0 2 4 6 8 10 12
Grade

0

0.5

1

1.5

2

2.5

3

3.5

4

#

Quiz Grades

FIGURE 12.4

Histogram of data.

416 CHAPTER 12: Advanced Plotting Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

that fallwithin that particular bin. Thehandleof ahistogram can alsobe stored in

an object variable; the properties can then be inspected and/or modified.

>> hhan=histogram(quizzes)
hhan =

Histogram with properties:

Data: [10 8 5 10 10 6 9 7 8 10 1 8]
Values: [1 0 0 0 1 1 1 3 1 4]

NumBins: 10
BinEdges: [0.5000 1.5000 2.5000 3.5000 4.5000

5.5000 6.5000 7.5000 8.5000 9.5000 10.5000]
BinWidth: 1

BinLimits: [0.5000 10.5000]
Normalization: 'count'

FaceColor: 'auto'
EdgeColor: [0 0 0]

Show all properties

Histograms are used for statistical analyses on data.

MATLAB has a function, pie, that will create a pie chart. Calling the function

with the form pie(vec) draws a pie chart using the percentage of each element
of vec of the whole (the sum). It shows these starting from the top of the circle

and going around counterclockwise. For example, the first value in the vector

[11 14 8 3 1], 11, is 30% of the sum, 14 is 38% of the sum, and so forth, as
shown in Fig. 12.5.

>> pie([11 14 8 3 1])

FIGURE 12.5

Pie chart showing percentages.

41712.1 Plot Functions and Customizing Plots

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

As of R2020a, it is possible to create format specifiers for the percentages. Labels

can also be passed to the pie function; these labels will appear instead of the
percentages (shown in Fig. 12.6). The labels can be either a cell array of char-

acter vectors or a string array.

>> pie([11 14 8 3 1], {'A','B','C','D', 'F'})

PRACTICE 12.2

A chemistry professor teaches three classes. These are the course numbers and enrollments:

CH 101 111
CH 105 52
CH 555 12

Use subplot to show this information using pie charts: the pie chart on the right should show the

percentage of students in each course, and on the left the course numbers. Put appropriate titles

on them.

12.1.3 Log Scales

The plot function uses linear scales for both the x and y axes. There are several

functions that instead use logarithmic scales for one or both axes: the function

loglog uses logarithmic scales for both the x and y axes, the function semilogy
uses a linear scale for the x-axis and a logarithmic scale for the y-axis, and the

FIGURE 12.6

Pie chart with labels from a cell array.

418 CHAPTER 12: Advanced Plotting Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

function semilogx uses a logarithmic scale for the x-axis and a linear scale for the

y-axis. The following example uses subplot to show the difference, for example,
between using the plot and semilogy functions, as seen in Fig. 12.7.

>> subplot(1,2,1)
>> plot(logspace(1,10))
>> title('plot')
>> subplot(1,2,2)
>> semilogy(logspace(1,10))
>> title('semilogy')

12.1.4 Animation

There are several ways to animate a plot. These are visuals, so the results cannot
really be shown here; it is necessary to type these intoMATLAB to see the results.

We will start by animating a plot of sin(x) with the vectors:

>> x=–2*pi : 1/100 : 2*pi;
>> y=sin(x);

This results in enough points that we will be able to see the result using the

built-in comet function, which shows the plot by first showing the point

(x(1),y(1)), and then moving on to the point (x(2),y(2)), and so on, leaving
a trail (like a comet!) of all of the previous points.

>> comet(x,y)

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10
109 plot

0 10 20 30 40 50
101

102

103

104

105

106

107

108

109

1010
semilogy

FIGURE 12.7

Plot versus semilogy.

41912.1 Plot Functions and Customizing Plots

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The end result looks similar to the result of plot(x,y), although the color will be

different.

Another way of animating is to use the built-in function movie, which dis-
plays recorded movie frames. The frames are captured in a loop using the

built-in function getframe and are stored in amatrix. For example, the follow-

ing script again animates the sin function. The axis function is used so that
MATLAB will use the same set of axes for all frames, and using the min and

max functions on the data vectors x and y will allow us to see all points. It
displays the “movie” once in the for loop, and then again when the movie

function is called.

sinmovie.m

% Shows a movie of the sin function

clear

x = –2*pi: 1/5 : 2*pi;

y = sin(x);

n = length(x);

for i = 1:n

plot(x(i),y(i),'r*')

axis([min(x)-1 max(x)+1 min(y)-1 max(y)+1])

M(i)=getframe;

end

movie(M)

12.1.5 Customizing Plots

There are many ways to customize figures in the Figure Window. Clicking on

the Plot Tools icon in the Figure Window itself will bring up the Property Editor
and Plot Browser, with many options for modifying the current plot. Addition-

ally, there are plot properties that can be modified from the defaults in the plot

functions, using the dot operator, as we have seen. Bringing up the documen-
tation page for the function namewill show all of the options for that particular

plot function.

For example, the bar and barh functions by default have a “width” of 0.8 for

the bars. When called as bar(x,y), the width of 0.8 is used. If, instead, a third
argument is passed, it is the width, for example barh(x,y,width). The follow-

ing script uses subplot to show variations on the width. A width of 0.6

results in more space between the bars because the bars are not as wide.
A width of 1 makes the bars touch each other, and with a width greater than

1, the bars actually overlap. The results are shown in Fig. 12.8.

420 CHAPTER 12: Advanced Plotting Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

barwidths.m

% Subplot to show varying bar widths

year=2016:2020;

pop=[0.9 1.4 1.7 1.3 1.8];

for i=1:4

subplot(1,4,i)

% width will be 0.6, 0.8, 1, 1.2

barh(year,pop,0.4+i*.2)

title(sprintf('Width=%.1f',0.4+i*.2))
xlabel('Population (mil)')
ylabel('Year')

end

Alternatively, the BarWidth property can be modified.

PRACTICE 12.3

Use help area to find out how to change the base level on an area chart (from the default of 0).

FIGURE 12.8

Subplot demonstrates varying widths in a bar chart.

42112.1 Plot Functions and Customizing Plots

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

As another example of customizing plots, pieces of a pie chart can be

“exploded” from the rest. In this case, two vectors are passed to the pie function:

first the data vector, then a logical vector; the elements for which the logical
vector is truewill be exploded from (separated from) the pie chart. A third argu-

ment, a cell array of labels, can also be passed. The result is seen in Fig. 12.9.

>> gradenums=[11 14 8 3 1];
>> letgrades={'A','B','C','D','F'};
>> which = gradenums == max(gradenums)
which =

0 1 0 0 0
>> pie(gradenums,which,letgrades)
>> title(sprintf('Largest Fraction of Grades: %c',...
letgrades{which}))

Largest Fraction of Grades: B

A

B

C

D
F

FIGURE 12.9

Exploding pie chart.

422 CHAPTER 12: Advanced Plotting Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

12.2 3D PLOTS

MATLAB has functions that will display 3D plots. Many of these functions have

the same name as the corresponding 2D plot function with a ‘3’ at the end. For
example, the 3D line plot function is called plot3. Other functions include

bar3, bar3h, pie3, comet3, and stem3.

Vectors representing x, y, and z coordinates are passed to the plot3 and stem3

functions. These functions show the points in 3D space. Clicking on the rotate
3D icon and then in the plot allows the user to rotate to see the plot from

different angles. Also, using the grid function makes it easier to visualize,

as shown in Fig. 12.10. The function zlabel is used to label the z-axis.

>> x = 1:5;
>> y = [0–2 4 11 3];
>> z = 2:2:10;
>> plot3(x,y,z,'k*')
>> grid
>> xlabel('x')
>> ylabel('y')
>> zlabel('z')
>> title('3D Plot')

Displaying the result of an animated plot in three dimensions is interesting. For

example, try the following using the comet3 function:

>> t = 0:0.001:12*pi;
>> comet3(cos(t), sin(t), t)

FIGURE 12.10

Three-dimensional plot with a grid.

42312.2 3D Plots

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Other interesting 3D plot types include mesh and surf. The mesh function

draws a wireframe mesh of 3D points, whereas the surf function creates a sur-
face plot by using color to display the parametric surfaces defined by the points.

MATLAB has several functions that will create the matrices used for the (x,y,z)

coordinates for specified shapes (e.g., sphere and cylinder).

For example, passing an integer n to the sphere function creates n+1 x n+1 x, y,
and z matrices, which can then be passed to the mesh function (Fig. 12.11) or

the surf function (Fig. 12.12).

>> [x,y,z] = sphere(15);
>> size(x)
ans =

16 16
>> mesh(x,y,z)
>> title('Mesh of sphere')

Additionally, the colorbar function displays a colorbar to the right of the plot,

showing the range of colors.

>> [x,y,z]=sphere(15);
>> sh=surf(x,y,z);
>> title('Surf of sphere')
>> colorbar

Themeshgrid function canbeused to create (x,y) points forwhich z¼ f(x,y); then

the x, y, and zmatrices can be passed tomesh or surf. For example, the following

creates a surface plot of the function cos(x)+sin(y), as seen in Fig. 12.13.

FIGURE 12.11

Mesh plot of sphere.

Note

that more options for

colors will be described

in Chapter 13.

424 CHAPTER 12: Advanced Plotting Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> [x, y]=meshgrid(-2*pi: 0.1: 2*pi);
>> z = cos(x)+sin(y);
>> surf(x,y,z)
>> title('cos(x)+sin(y)')
>> xlabel('x')
>> ylabel('y')
>> zlabel('z')

FIGURE 12.12

Surf plot of sphere.

FIGURE 12.13

Use of meshgrid for f(x,y) points.

42512.2 3D Plots

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

12.3 PRIMITIVE GRAPHICS OBJECTS

Primitive objects, or core objects in MATLAB, are the very basic graphics

primitives. A description can be found under the MATLAB help. In the
documentation, search for Graphics and Graphics Objects. The primitive objects

include:

n line
n text
n rectangle
n patch
n image

These are all built-in functions; doc can be used to find out how each function
is used. The first four of these core objects will be described in this section;

images will be described in Section 13.1.

A line is a core graphics object, which is what is used by the plot function. The
following is an example of creating a line object, setting some properties, and

saving the handle in a variable hl:

>> x = –2*pi: 1/5 : 2*pi;
>> y = sin(x);
>> hl = line(x,y,'LineWidth', 6, 'Color', [0.5 0.5 0.5])
hl =

Line with properties:

Color: [0.5000 0.5000 0.5000]
LineStyle: '-'
LineWidth: 6

Marker: 'none'
MarkerSize: 6

MarkerFaceColor: 'none'
XData: [1x63 double]
YData: [1x63 double]
ZData: [1x0 double]

Show all properties

As seen in Fig. 12.14, this draws a reasonably thick gray line for the sin function.

As before, the handle will be valid as long as the Figure Window is not closed.

As another example, the following uses the line function to draw a circle. First, a
white FigureWindow is created. The x and y data points are generated, and then

the line function is used, specifying a dotted red line with a line width of 4. The

axis function is used tomake the axes square, so the result looks like a circle, but

426 CHAPTER 12: Advanced Plotting Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

then removes the axes from the Figure Window (using axis square and axis off,

respectively). The result is shown in Fig. 12.15.

>> figure('Color',[1 1 1])
>> pts = 0:0.1:2*pi;
>> xcir = cos(pts);
>> ycir = sin(pts);
>> line(xcir, ycir, 'LineStyle',':', ...

'LineWidth',4,'Color','r')
>> axis square
>> axis off

The text graphics function allows text to be printed in a Figure Window, includ-

ing special characters that are printed using \specchar, where “specchar” is the
actual name of the special character. The format of a call to the text function is

text(x,y,'text string')

where x and y are the coordinates on the graph of the lower left corner of the text

box in which the text string appears. The special characters include letters of the
Greek alphabet, arrows, and characters frequently used in equations. For exam-

ple, Fig. 12.16 displays the Greek symbol for pi and a right arrowwithin the text

box.

-8 -6 -4 -2 0 2 4 6 8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 12.14

A line object with modified line width and color.

FIGURE 12.15

Use of line to draw a circle.

42712.3 Primitive Graphics Objects

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> x = –4:0.2:4;
>> y = sin(x);
>> hp = line(x,y,'LineWidth',3);
>> thand = text(2,0,'Sin(\pi)\rightarrow')
thand =

Text (Sin(\pi)\rightarrow) with properties:

String: 'Sin(\pi)\rightarrow'
FontSize: 10

FontWeight: 'normal'
FontName: 'Helvetica'

Color: [0 0 0]
HorizontalAlignment: 'left'

Position: [2 0 0]
Units: 'data'

Show all properties

Some of the other properties are shown here.

>> thand.Extent
ans =

2.0000 –0.0380 0.6636 0.0730
>> thand.EdgeColor
ans =

'none'
>> thand.BackgroundColor
ans =

'none'

Sin()

FIGURE 12.16

A line object with a text box.

428 CHAPTER 12: Advanced Plotting Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Although the Position specified was (2,0), the Extent is the actual extent of the

text box, which cannot be seen as the BackgroundColor and EdgeColor are not
specified. These can be modified. For example, the following produces the

result seen in Fig. 12.17.

>> thand.BackgroundColor = [0.8 0.8 0.8];
>> thand.EdgeColor = [1 0 0];

The gtext function allows you to move your mouse to a particular location

in a Figure Window, indicating where text should be displayed. As the
mouse is moved into the Figure Window, cross hairs indicate a location;

clicking on the mouse will display the text in a box with the lower left

corner at that location. The gtext function uses the text function in conjunc-
tion with ginput, which allows you to click the mouse at various

locations within the Figure Window and store the x and y coordinates of

these points.

Another core graphics object is rectangle, which can have curvature added to it
(!!). Just calling the function rectangle without any arguments brings up a

Figure Window (shown in Fig. 12.18), which, at first glance, does not seem

to have anything in it:

FIGURE 12.17

Text box with a modified edge color and background color.

42912.3 Primitive Graphics Objects

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> recthand=rectangle
recthand=

Rectangle with properties:

FaceColor: 'none'
EdgeColor: [0 0 0]
LineWidth: 0.5000
LineStyle: '-'
Curvature: [0 0]
Position: [0 0 1 1]

Show all properties

The Position of a rectangle is [x y w h], where x and y are the coordinates of the

lower left point, w is the width, and h is the height. The default rectangle has a
Position of [0 0 1 1]. The default Curvature is [0 0], which means no curvature.

The values range from [0 0] (no curvature) to [1 1] (ellipse). A more interesting

rectangle object is seen in Fig. 12.19.

Note that properties can be set when calling the rectangle function, and also

subsequently using the dot operator, as follows:

>> rh = rectangle('Position', [0.2, 0.2, 0.5, 0.8],...
'Curvature',[0.5, 0.5]);

>> axis([0 1.2 0 1.2])
>> rh.LineWidth = 3;
>> rh.LineStyle = ':';

This creates a curved rectangle and uses dotted lines.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 12.18

A rectangle object.

430 CHAPTER 12: Advanced Plotting Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The patch function is used to create a patch graphics object, which ismade from

2D polygons. A simple patch in 2D space, a triangle, is defined by specifying the
coordinates of three points as shown in Fig. 12.20; in this case, the color red is

specified for the polygon.

>> x = [0 1 0.5];
>> y = [0 0 1];
>> hp = patch(x,y,'r')
hp =

Patch with properties:

FaceColor: [1 0 0]
FaceAlpha: 1
EdgeColor: [0 0 0]
LineStyle: '-'

Faces: [1 2 3]
Vertices: [3x2 double]

Show all properties

The Vertices property stores the three points given by the x and y data vectors.

>> hp.Vertices
ans =

0 0
1.0000 0
0.5000 1.0000

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

FIGURE 12.19

Rectangle object with curvature.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 12.20

Simple patch.

43112.3 Primitive Graphics Objects

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The Faces property tells how the vertices are connected to create the patch. The

vertices are numbered; the first point (0,0) is vertex 1, the point (1,0) is vertex 2,
and the last point (0.5, 1) is vertex 3. The Faces property specifies connecting

vertex 1 to 2 to 3 (and then by default back to 1). Another method of creating a

patch is to specifically use the Vertices and Faces properties.

One way of calling patch is patch(fv), where fv is a structure variable with field
names that are names of properties, and the values are the property values, for

example, fields calledVertices and Faces. For example, consider a patch object that
consistsof three connected triangles, andhas fiveverticesgivenby thecoordinates:

(1) (0, 0)
(2) (2, 0)
(3) (1, 2)
(4) (1,–2)
(5) (3, 1)

The order in which the points are given is important because the faces describe

how the vertices are linked. To create these vertices in MATLAB and define faces

that connect them,we use a structure variable and then pass it to the patch func-
tion; the result is shown in Fig. 12.21.

mypatch.Vertices = [...
0 0
2 0
1 2
1 –2
3 1];

mypatch.Faces = [
1 2 3
2 3 5
1 2 4];

0 0.5 1 1.5 2 32.5

−1.5

−1

−2

−0.5

0

0.5

1.5

2

1

FIGURE 12.21

Patch object.

432 CHAPTER 12: Advanced Plotting Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

patchhan=patch(mypatch, 'FaceColor', 'r',...
'EdgeColor','k');

The face color is set to red and the edge color to black.

To vary the colors of the faces of the polygons, the FaceColor property is set to
‘flat’, which means that every face has a separate color. The mycolors variable

stores three colors in the rows of thematrix by specifying the red, green, and blue

components for each; the first is blue, the second is cyan (a combination of green
and blue), and the third is yellow (a combination of red and green). The property

FaceVertexCData specifies the color data for the vertices, as seen in Fig. 12.22.

>> mycolors = [0 0 1; 0 1 1; 1 1 0];
>> patchhan = patch(mypatch, 'FaceVertexCData', ...

mycolors, 'FaceColor','flat');

12.4 PLOT APPLICATIONS

In this section, we will show some examples that integrate plots and many of the

other concepts covered to this point in the book. For example, wewill have a func-
tion that receives an x vector, a function handle of a function used to create the y

vector, and a cell array of plot types as character vectors andwill generate the plots,

and we will also show examples of reading data from a file and plotting them.

12.4.1 Plotting From a Function

The following function generates a Figure Window (seen in Fig. 12.23) that
shows different types of plots for the same data. The data are passed as input

arguments (as an x vector and the handle of a function to create the y vector)

0 0.5 1 1.5 2 32.5

−1.5

−1

−2

−0.5

0

0.5

1.5

2

1

FIGURE 12.22

Varying patch colors.

43312.4 Plot Applications

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

to the function, as is a cell array with the plot type names. The function gener-

ates the FigureWindow using the cell array with the plot type names. It creates a
function handle for each using the str2func function.

plotxywithcell.m

function plotxywithcell(x, fnhan, rca)
% plotxywithcell receives an x vector, the handle
% of a function (used to create a y vector), and
% a cell array with plot type names; it creates
% a subplot to show all of these plot types
% Format: plotxywithcell(x,fn handle, cell array)

lenrca = length(rca);
y = fnhan(x);
for i = 1:lenrca

subplot(1,lenrca,i)
funh = str2func(rca{i});
funh(x,y)
title(upper(rca{i}))
xlabel('x')
ylabel(func2str(fnhan))

end
end

For example, the function could be called as follows:

>> anfn = @ (x) x .^ 3;
>> x = 1:2:9;
>> rca = {'bar', 'area', 'plot'};
>> plotxywithcell(x, anfn, rca)

BAR

1 3 5 7 9

x

0

100

200

300

400

500

600

700

800

@
(x

)x
.3

AREA

0 5 10

x

0

100

200

300

400

500

600

700

800

@
(x

)x
.3

0 5 10

x

0

100

200

300

400

500

600

700

800

@
(x

)x
.3

PLOT

FIGURE 12.23

Subplot showing different file types with their names as titles.

434 CHAPTER 12: Advanced Plotting Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The function is general and works for any number of plot types stored in the cell

array.

12.4.2 Plotting File Data

It is often necessary to read data from a file and plot them. Normally, this
entails knowing the format of the file. For example, let us assume that a com-

pany has two divisions, A and B. Assume that the file “ab21.dat” contains four

lines, with the sales figures (in millions) for the two divisions for each quarter
of the year 2021. For example, the file might look like this (and the format will

be exactly like this):

A5.2B6.4
A3.2B5.5
A4.4B4.3
A4.5B2.2

The following script reads in the data and plots the data as bar charts in one

FigureWindow. The script prints an error message if the file open is not success-

ful or if the file close was not successful. The axis command is used to force the
x-axis to range from 0 to 3 and the y-axis from 0 to 8, which will result in

the axes shown here. The numbers 1 and 2would show on the x-axis rather than

the division labels A and B by default. The xticklabels function changes the
XTickLabel property of the axes to use the character vectors in the cell array

as labels on the tick marks on the x-axis.

plotdivab.m

% Reads sales figures for 2 divisions of a company one
% line at a time as char vectors, and plots the data
fid = fopen('ab21.dat');
if fid == –1

disp('File open not successful')

else
for i = 1:4

% Every line is of the form A#B#; this separates
% the characters and converts the #’s to actual
% numbers
aline = fgetl(fid);
aline = aline(2:length(aline));
[compa, rest]=strtok(aline,'B');
compa = str2double(compa);
compb = rest(2:length(rest));
compb = str2double(compb);

% Data from every line is in a separate subplot
subplot(1,4,i)

bar([compa,compb])
xticklabels({'A', 'B'})
axis([0 3 0 8])
ylabel('Sales (millions)')

43512.4 Plot Applications

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

title(sprintf('Quarter %d',i))
end
closeresult = fclose(fid);
if closeresult �= 0

disp('File close not successful')
end

end

Running this produces the subplot shown in Fig. 12.24.

12.5 SAVING AND PRINTING PLOTS

Once any plot has been created in a Figure Window, there are several options

for saving it, printing it, and copying and pasting it into a report. When the

Figure Window is open, choosing Edit and then Copy Figure will copy the
Figure Window so that it can then be pasted into a word processor. Choosing

File and then Save As allows you to save in different formats, including com-

mon image types, such as .jpg, .tif, and .png. Another option is to save it as
a .fig file, which is a Figure file type used in MATLAB. If the plot was not created

programmatically, or the plot properties have been modified using the plot

tools icon, choosing File and then Generate Code will generate a script that will
re-create the plot.

Quarter 1

A B
0

1

2

3

4

5

6

7

8
Quarter 2

A B
0

1

2

3

4

5

6

7

8
Quarter 3

A B
0

1

2

3

4

5

6

7

8
Quarter 4

A B
0

1

2

3

4

5

6

7

8

S
al

es
 (

m
ill

io
ns

)

S
al

es
 (

m
ill

io
ns

)

S
al

es
 (

m
ill

io
ns

)

S
al

es
 (

m
ill

io
ns

)

FIGURE 12.24

Subplot with customized x-axis tick labels.

436 CHAPTER 12: Advanced Plotting Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Choosing File and then Print allows you to print the file on a connected

printer. The print command can also be used in MATLAB programs.
The line

print

in a script will print the current Figure Window using default formats. Options

can also be specified (see the Documentation page on print for the options).

Also, by specifying a file name, the plot is saved to a file rather than printed.
For example, the following would save a plot as a .tif file with 400 dots per inch

in a file named ‘plot.tif’:

print –dtiff -r400 plot.tif

Data Science and Machine Learning Supplement
Fitting Polynomial Curves / Linear Regression
Recall that regression is a supervised Machine Learning algorithm that predicts
continuous data (real numbers). In this section, we will describe fitting a curve

to continuous data and the underlying regression algorithm.

Simple curves are polynomials of different degrees or orders. The degree is the

integer of the highest exponent in the expression. For example:

n a straight line is a first order (or degree 1) polynomial of the form ax+b,

or, more explicitly, ax1 + b.

n aquadratic is a secondorder (ordegree2)polynomialof the formax2+bx+c.

n a cubic (degree 3) is of the form ax3+bx2+cx+d.

MATLAB represents a polynomial as a row vector of coefficients. For example,

the polynomial x3 + 2x2 – 4x+3 would be represented by the vector [1 2–4 3].

The polynomial 2x4 – x2 + 5would be represented by [2 0–1 0 5]; note the zero
terms for x3 and x1.

The function polyvalwill evaluate a polynomial p at x; the form is polyval(p,x).

The argument x can be a scalar or a vector. For example, the polynomial –2x2 + x

+4 is evaluated at x values 1, 2, and 3:

>> p=[–2 1 4];
>> polyval(p,1:3)
ans =

3 –2 –11

In many applications, continuous properties are sampled, to result in dis-
crete (x, y) points. Interpolation means estimating the values in between

recorded data points. Extrapolation is estimating outside of the bounds

of the recorded data. One way to do this is to fit a curve to the data and
use this for the estimations. Curve fitting is finding the curve that “best fits”

the data.

43712.5 Saving and Printing Plots

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Simple curves are polynomials of different degrees, as described previously.

Thus, curve fitting involves finding the best polynomials to fit the data. Finding
the best straight line that goes through data would mean finding the values of a

and b in the equation ax+b.

MATLAB has a function to do this called polyfit. The function polyfit finds

the coefficients of the polynomial of the specified degree that best fits the
data using a least squares algorithm. There are three arguments passed to

the function: x and y vectors that represent the data, and the degree of
the desired polynomial. For example, to fit a straight line (degree 1)

through the points representing temperatures, the call to the polyfit func-

tion would be:

>> x = 1:10;
>> y = [2, 2.7, 3.1, 4, 4.5, 5.3, 5.9, 6.4, 7.1, 9];
>> coefs = polyfit(x,y,1)
coefs =

0.7079 1.1067

which says that the best straight line is of the form 0.7079x+1.1067.

The function polyval can then be used to evaluate the polynomial at

specified values. For example, we could evaluate at every value in the x

vector:

>> linepts=polyval(coefs, x);

This results in y values for each point in the x vector, and stores them in a

vector called linepts. The points and the line can be plotted together, for
example,

>> phan=plot(x,y,'k*', x, linepts)
phan=

21 Line array:

Line
Line

By storing the result of the plot in a handle variable, the plot objects (in this

case, lines) can be accessed so that the properties can be queried and mod-

ified. In this case, there is a Line array; phan(1) is the first thing plotted, the
individual points, and phan(2) is the straight line. Modifying a few

properties:

>> phan(1).MarkerSize = 10;
>> phan(2).LineWidth = 3;

results in the plot shown in Fig. 12.25.

438 CHAPTER 12: Advanced Plotting Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

To estimate the values of y at x values that were not sampled,polyval can be used

for discrete x points. Therefore, polyval can be used to interpolate between the

given data points and also to extrapolate beyond the given data points.

>> polyval(coefs, 8.5)
ans =

7.1236
>> polyval(coefs, 11)
ans =

8.8933

The better the curve fit, the more accurate these interpolated and extrapolated

values will be.

The polyfit function uses the least squares regressionmethod. To find the equa-
tion of the straight line y¼mx+b that best fits using a least squares regression,

the equations for m and b are:

m¼ n
X

xiyi�
X

xi
X

yi

n
X

x2i �
X

xi

� �2

b¼ y�mx

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

FIGURE 12.25

Straight line fit.

43912.5 Saving and Printing Plots

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

where n is the number of points in x and y, all summations are from i¼1 to n,

and y and x represent the means of the vectors y and x. The least squares fit min-
imizes the sum of the squares of the differences between the actual data and the

data predicted by the line.

n Explore Other Interesting Features

There are many built-in plot functions in MATLAB, and many ways to

customize plots. Use the Help facility to find them. Here are some specific

suggestions for functions to investigate.

Investigate the peaks function, and the use of the resulting matrix as a test

for various plot functions.

Investigate how to show confidence intervals for functions using the

errorbar function.

Find out how to set limits on axes using xlim, ylim, and zlim.

The plotyy function allows y axes on both the left and the right of the graph.

Find out how to use it, and how to put different labels on the two y axes.

Investigate how to use the gtext and ginput functions.

Investigate the 3D functions meshc and surfc, which put contour plots
under the mesh and/or surface plots.

Investigate using the datetick function to use dates to label tick lines. Note
that there are many options!

Investigate the use of pie charts with categorical arrays. n

SUMMARY

COMMON PITFALLS

n Closing a Figure Window prematurely: the properties can only be set if

the Figure Window is still open!

PROGRAMMING STYLE GUIDELINES

n Always label plots.

n Take care to choose the type of plot in order to highlight themost relevant
information.

440 CHAPTER 12: Advanced Plotting Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

MATLAB Functions and Commands

barh
area
stem
scatter
histogram
pie
loglog
semilogy
semilogx
comet
movie

getframe
plot3
bar3
bar3h
pie3
comet3
stem3
zlabel
mesh
surf
sphere

cylinder
colorbar
line
text
gtext
ginput
rectangle
patch
xticklabels
print

Exercises

1. Create a data file that contains 10 numbers. Write a script that will load the

vector from the file, and use subplot to do an area plot and a stem plot with

these data in the same Figure Window (Note: a loop is not needed). Prompt the

user for a title for each plot.

2. Do a quick survey of your friends to find ice cream flavor preferences. Display

this information using a pie chart.

3. Create a matrix variable. Display the numbers from the matrix using a subplot

as both a bar chart and a stacked bar.

4. The number of faculty members in each department at a certain College of

Engineering are as follows: ME 22,BM 45,CE 23,EE 33.Experiment with at

least three different plot types to graphically depict this information. Make sure

that you have appropriate titles, labels, and legends on your plots. Which

type(s) work best, and why?

5. Create a simple pie chart:

>> v=[11 33 5];
>> ph=pie(v)

Notice that the result is a graphics array, consisting of three patch primitives

and three text primitives. So, ph is an array that can be indexed. Use the

properties to change the face color of one of the patches, for example, ph(1).

6. Experiment with the comet function: try the example given when help comet is

entered and then animate your own function using comet.

7. Experiment with the comet3 function: try the example given when help comet3

is entered and then animate your own function using comet3.

8. Experiment with the scatter and scatter3 functions.

9. Use the cylinder function to create x, y, and zmatrices and pass them to the surf

function to get a surface plot. Experiment with different arguments to cylinder.

10. Experiment with contour plots.

11. Generate an ellipsoid using the ellipsoid function and then plot using surf.

441Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

12. Create an x vector, and then two different vectors (y and z) based on x. Plot them

with a legend. Use help legend to find out how to position the legend itself on

the graph, and experiment with different locations.

13. Create an x vector that has 30 linearly spaced points in the range from�2π to

2π, and then y as sin(x). Do a stem plot of these points, and store the handle in a

variable. Change the face color of the marker.

14. Write a script that will draw the line y¼x between x¼2 and x¼5, with a random

line width between 1 and 10.

15. Write a script that will plot the data points from y and z data vectors, and store

the handles of the two plots in variables yhand and zhand. Set the line widths to

3 and 4 respectively. Set the colors and markers to random values (create

character vectors containing possible values and pick a random index).

16. Write a function plotexvar that will plot data points represented by x and y

vectors which are passed as input arguments. If a third argument is passed, it

is a line width for the plot, and if a fourth argument is also passed, it is a color.

The plot title will include the total number of arguments passed to the function.

17. A file houseafford.dat stores on its three lines years, median incomes, and

median home prices for a city. The dollar amounts are in thousands. For

example, it might look like this:

2014 2015 2016 2017 2018 2019 2020 2021
72 74 74 77 80 83 89 93
250 270 300 310 350 390 410 380

Create a file in this format, and then load the information into a matrix. Create a

horizontal stacked bar chart to display the information, with an appropriate title.

Note: use the ‘XData’ property to put the years on the axis as shown in Fig. 12.26.

Median Income and Home Prices

0 50 100 150 200 250 300 350 400 450 500
$

2014

2015

2016

2017

2018

2019

2020

2021

Y
ea

r

FIGURE 12.26

Horizontal stacked bar chart of median incomes and home prices.

442 CHAPTER 12: Advanced Plotting Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

18. Create a graph, and then use the text function to put some text on it, including

some \specchar commands to increase the font size and to print some Greek

letters and symbols.

19. Create a rectangle object, and use the axis function to change the axes so

that you can see the rectangle easily. Change the Position, Curvature,

EdgeColor, LineStyle, and LineWidth. Experiment with different values for

the Curvature.

20. Write a script that will display rectangles with varying curvatures and line

widths. The script will, in a loop, create a 2 by 2 subplot showing rectangles.

In all, both the x and y axes will go from 0 to 1.4. Also, in all, the lower left

corner of the rectangle will be at (0.2, 0.2), and the length and width will

both be 1. The line width, i, is displayed in the title of each plot. The

curvature will be [0.2, 0.2] in the first plot, then [0.4, 0.4], [0.6,0.6], and

finally [0.8,0.8].

21. Write a script that will start with a rounded rectangle. Change both the

x and y axes from the default to go from 0 to 3. In a for loop, change the

position vector by adding 0.1 to all elements 10 times (this will change

the location and size of the rectangle each time). Create a movie consisting

of the resulting rectangles. The final result should look like the plot shown

in Fig. 12.27.

22. A hockey rink looks like a rectangle with curvature. Draw a hockey rink, as in

Fig. 12.28.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

FIGURE 12.27

Curved rectangles produced in a loop.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3
Let's play hockey!

FIGURE 12.28

Hockey rink.

443Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

23. Given the following script:

fw.Vertices=[0 0; 0 4; 2 4; 3 2];
fw.Faces=[1 2 3 4];
fwinner=patch(fw,'FaceColor','g', 'EdgeColor','k');
ml=line([0 2], [4 4],'Color',[0 0.4 0], 'LineWidth',5);
axis([0 3 0 5])
text(1,4.2,'Monstah')

Sketch the figure that would result from executing the script. Indicate

properties by describing them and/or using arrows. MakShow the axes and

draw some tick labels to indicate the positions of objects. Note: the default

LineWidth is 0.5.

24. Given the following script:

rechan = rectangle('Position',[2,2,3,3], 'Curvature',[1 1]);
obj1 = line([2.5,4.5], [2.5,4.5], 'Color','r');
obj2 = line([2.5,4.5], [4.5,2.5], 'Color','r');
texhan = text(3.2,3.5,'Cell Phones');
set([obj1, obj2, rechan], 'LineWidth', 3)
axis([1 6 1 6])

Draw a sketch of the FigureWindow that would result from executing the script.

25. Assume that the Figure Window from the previous script is still open. For each

of the following expressions, show the result.

gr=groot;
gr.Children== gcf

rechan.Parent== texhan.Parent

obj2.LineWidth

26. Using the patch function, create a black box with unit dimensions (therefore,

there will be eight vertices and six faces). Set the edge color to white so that

when you rotate the figure, you can see the edges.

27. Write a function plotline that will receive x and y vectors of data points, and use

the line primitive to display a line using these points. If only the x and y vectors

are passed to the function, it will use a line width of 5; otherwise, if a third

argument is passed, it is the line width.

28. Investigate the polyshape function.

29. The nsidedpoly function creates a polygon (a polyshape object) with n sides.

Create an 8-sided polyshape object and plot it; investigate its properties.

30. The xticks function can be used to create custom tick marks. Create a plot of

sin(x) where x ranges from at least�7 to 7, and then change the x ticks with

xticks(-2*pi: pi: 2*pi).

Data Science and Machine Learning
31. Create x and y vectors that are negatively correlated (y falls when x rises). Use

polyfit to fit a straight line through the points. Plot both the original data points

and the line on one graph. Estimate the y value when x is 8.5 using polyval, and

plot that point as a large (MarkerSize of 20) red circle on the graph.

444 CHAPTER 12: Advanced Plotting Techniques

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

CHAPTER 13

Sights and Sounds

KEY TERMS

apps

Graphical

User Interfaces

GUIs

image processing

sound processing

pixels

true color

RGB

colormap

event

callback function

event-driven programming

components

sound wave

sampling frequency

The MATLAB® product has functions that manipulate images, audio, or sound
files. MATLAB also has the capability to produce sophisticated apps, and also

Graphical User Interfaces, or GUIs. Apps utilize object-oriented programming

to allow users to graphically interact with programs using graphical objects
such as push buttons and sliders.

This chapter starts with the introduction of image processing functions and the
two basic methods for representing color in images.

Next, the topic of creating apps is introduced. Because the focus of this book is
programming concepts, the programming aspects of creating GUIs are themain

part of this section. GUIs in MATLAB use procedural code. The object-based

App Designer was introduced in R2016a and since then, much more function-
ality has been included. The use of App Designer is illustrated with several

examples.

The chapter ends with a brief introduction to some of the sound processing

functions.

13.1 IMAGE PROCESSING

Color images are represented as grids, or matrices, of picture elements called

pixels. In MATLAB, an image is represented by a matrix in which each element

CONTENTS

13.1 Image
Processing
...................445

13.2 Introduction to
Apps and
Graphical User
Interfaces .457

13.3 App Designer
...................474

13.4 Sound Files
...................484

Summary 489

Common
Pitfalls489

Programming
Style
Guidelines489

MATLAB. https://doi.org/10.1016/B978-0-323-91750-6.00013-5

445

Copyright © 2023 Elsevier Inc. All rights reserved.

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

corresponds to a pixel in the image. Each element that represents a particular

pixel stores the color for that pixel. There are two basic ways in which the color
can be represented:

n True-color or RGB, in which the three color components are stored

(red, green, and blue, in that order) in layers in a three-dimensional

matrix
n Index into a colormap, in which the value stored for each pixel is an

integer that refers to a row in another matrix called a colormap; the

colormap stores the red, green, and blue components of colors in three
separate columns

Thus, for an image that hasm� n pixels, there are twomethods for representing
color.

In the true-color or RGB method, all of the information is stored in one 3D

matrix with the size m � n � 3. The first two indices represent the coordinates

of the pixel. The third index is the color component, so (:,:,1) is the red,
(:,:,2) is the green, and (:,:,3) is the blue component.

The colormap method instead uses two separate matrices: the image matrix is a

2D matrix with a size of m � n. Every element in this matrix of integers is an
index into a colormap matrix, which is the size p � 3 (where p is the number

of colors available in that particular colormap). Each row in the colormap has

three numbers representing one color: first the red, then the green, and then the
blue component.

Typically colormaps use double values in the range from 0 to 1, and RGBmatri-

ces use the type uint8. These conventions are used in the next two sections that
introduce these methods.

13.1.1 Colormaps

When an image is represented using a colormap, there are two matrices:

n The colormapmatrix, which has dimensions p� 3, where p is the number
of available colors; every row stores a separate color by storing three

real numbers in the range from 0 to 1, representing the red, green, and

blue components of the color.
n The image matrix, with dimensions m � n; every element stores

a color. To accomplish this, every element is an index into a
particular row in the colormap, which means that it is an integer in

the range 1 to p.

446 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Image matrix Colormap matrix
1 n 1 2 3

1 1

x

m x

p

MATLAB has several built-in colormaps that are named; these can be seen and
can be set using the built-in function colormap. The reference page on color-

map displays them. Calling the function colormap without passing any

arguments will return the current colormap. The default colormap is a map
named parula, which has 256 colors. In versions of MATLAB before

R2014b, the default was the colormap named jet, which is still an available col-

ormap. A colormap named turbowas introduced in R2020b, which has similar
colors to jet.

The following stores the current colormap in a variablemap, gets the size of the

matrix (which will be the number of rows in this matrix or, in other words, the

number of colors, by three columns), and displays the last five rows in this col-
ormap. If the current colormap is the default parula, the following will be the

result:

>> map=colormap;
>> [r, c]=size(map)
r =

256
c =

3
>> map(252:256, :)
ans =

0.9692 0.9609 0.1061
0.9711 0.9667 0.1001
0.9730 0.9724 0.0938
0.9749 0.9782 0.0872
0.9769 0.9839 0.0805

This shows that there are 256 rows or, in other words, 256 colors, in this

particular colormap. It also shows that the last five colors are shades of yellow

(the combination of almost full red and green but very little blue).

Prior to R2019b, the built-in colormaps had 64 colors. To use only 64 colors
instead of 256, the colormap function can be called as follows:

>> colormap(parula(64))

Note

that parula is actually a

function that returns a

colormapmatrix. Passing

no arguments results in

the 256 � 3 matrix

shown here.

Note

that this does not return

the first 64 colors, rather,

they are spread out over

the full range.

44713.1 Image Processing

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The format of calling the image function is:

image(mat)

where the matrix mat represents the colors in an m � n image (m � n pixels in
the image). If the matrix has the size m � n, then each element is an index into

the current colormap.

One way to display the colors in the default parula colormap (which has 256
colors) is to create a matrix that stores the values 1 through 256 and to pass that

to the image function; the result is shown in Fig. 13.1. When the matrix is

passed to the image function, the value in each element in the matrix is used
as an index into the colormap.

For example, the value in imagemat(1,2) is 17 so the color displayed in location

(1,2) in the image will be the color represented by the seventeenth row in the

colormap. By using the numbers 1 through 256, we can see all colors in this
colormap.

>> imagemat =reshape(1:256, 16, 16);
>> image(imagemat)

Aswith plots, the result of calling the image function can be stored in a variable;

this allows the properties of the image to be inspected and/or modified.

>> im =image(imagemat);

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

FIGURE 13.1

Columnwise display of the 256 colors in the parula colormap.

448 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

To see the colors in the colormap turbo instead, we could make turbo the

current colormap and re-display the image matrix, as seen in Fig. 13.2.

>> colormap(turbo)
>> image(imagemat)

Another example creates a 5 � 5matrix of random integers in the range from 1

to the number of colors (stored in a variable r); the resulting image appears in
Fig. 13.3 (assuming that the colormap is still turbo and that r is the number of

rows, 256).

>> mat =randi(r,5);
>> image(mat)

Of course, these “images” are rather crude; the elements representing the pixel
colors are quite large blocks. A larger matrix would result in something more

closely resembling an image, as shown in Fig. 13.4.

>> mat =randi(r,500);
>> image(mat)

Although MATLAB has built-in colormaps, it is also possible to create others

using any color combinations. For example, the following creates a customized
colormap with just three colors: black, white, and red. This is then set to be the

current colormap by passing the colormap matrix to the colormap function.

Then, a 40 � 40 matrix of random integers, each in the range from 1 to 3
(as there are just three colors), is created, and that is passed to the image func-

tion; the results are shown in Fig. 13.5.

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

FIGURE 13.2

Columnwise display of the 256 colors in the turbo colormap.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

FIGURE 13.3

A 5 � 5 display of random colors from the turbo colormap.

44913.1 Image Processing

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> mycolormap = [0 0 0; 1 1 1; 1 0 0];
>> colormap(mycolormap)
>> mat = randi(3,40);
>> image(mat)

The numbers in the colormap do not have to be integers; real numbers
represent different shades as seen with the default colormap parula. For exam-

ple, the following colormap gives us a way to visualize different shades of red, as
shown in Fig. 13.6. All columns in the colormap matrix are initialized to zero,

and then just the first column (red) is modified to vary from 0 to 1 in steps of

0.1.

>> colors = zeros(11,3);
>> colors(:,1) = [0:0.1:1]';
>> colormap(colors)
>> vec = 1:length(colors);
>> image(vec)

PRACTICE 13.1

Given the following colormap, “draw” the scene shown in Fig. 13.7. (Hint: Preallocate the image

matrix. The fact that the first color in the colormap is white makes this easier.)

>> mycolors = [1 1 1; 0 1 0; 0 0.5 0; ...
0 0 1; 0 0 0.5; 0.3 0 0];

Colormaps are used with many plot functions. Generally, the plots shown

assume the default colormap parula, but the colormap can be modified. For

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

FIGURE 13.4

A 500 � 500 display of random colors.

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

FIGURE 13.5

Random colors from a custom colormap.

450 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

example, plotting a 3D object using surf or sphere, and displaying a colorbar

would normally display the parula colors. The following is an example of mod-
ifying this to use the colormap pink, as shown in Fig. 13.8.

>> [x,y,z] = sphere(20);
>> colormap(pink)
>> surf(x,y,z)
>> title('Pink sphere')
>> colorbar

1 2 3 4 5 6 7 8 9 10 11

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

FIGURE 13.6

Shades of red.

FIGURE 13.7

Draw this tree with grass and sky.

FIGURE 13.8

Pink colormap for sphere function.

45113.1 Image Processing

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Multiple colormaps can be displayed in a single Figure Window by passing the

axes handle to the colormap function, as shown in Fig. 13.9.

[x,y,z] = sphere(20);
ax1 = subplot(1,2,1)
surf(x,y,z);
colormap(ax1,pink)
title('Pink sphere')
ax2 = subplot(1,2,2)
surf(x,y,z);
colormap(ax2,jet)
title('Jet sphere')

13.1.2 True-Color Matrices

True-color matrices, or RGB matrices, are another way to represent images. True

color matrices are 3D matrices. The first two coordinates are the coordinates of
the pixel. The third index is the color component; (:,:,1) is the red, (:,:,2) is

the green, and (:,:,3) is the blue component.

In an 8-bit RGB image, each element in the matrix is of the type uint8, which is

an unsigned integer type storing values in the range from 0 to 255. The mini-
mum value, 0, represents the darkest hue available, so all 0s result in a black

pixel. The maximum value, 255, represents the brightest hue. For example, if

the values for a given pixel coordinates px and py are: (px,py,1) is 255, (px,
py,2) is 0, and (px,py,3) is 0, then that pixel will be bright red. All 255s result

in a white pixel.

FIGURE 13.9

Subplot with multiple colormaps.

452 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The image function displays the information in the 3D matrix as an image.

For example, the following creates a 2 � 2 image as shown in Fig. 13.10. The

matrix is 2� 2� 3where the third dimension is the color. The pixel in location

(1,1) is red, the pixel in location (1,2) is blue, the pixel in location (2,1) is
green, and the pixel in location (2,2) is black. To make the pixel in location

(1,1) red, we could execute the following three statements, which would make

the red layer the brightest possible, with no green or blue:

>> mat(1,1,1) = 255;
>> mat(1,1,2) = 0;
>> mat(1,1,3) = 0;

Similarly, we could execute three statements to set the color for each of the
other pixels. However, it is much simpler to start by preallocating the entire

image matrix to all zeros and then changing individual values to 255 as
necessary.

>> mat = zeros(2,2,3);
>> mat(1,1,1) = 255;
>> mat(1,2,3) = 255;
>> mat(2,1,2) = 255;
>> image(mat)

The following shows how to separate the red, green, and blue components from

an image matrix. In this case we are using the “image” matrixmat, and then use

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

FIGURE 13.10

Image from a true-color matrix.

Note

if a 2D image matrix is

passed to image, it uses

the current colormap to

display the image, but if a

3D image matrix is

passed to image, it

ignores the colormap and

instead uses the infor-

mation from the 3D

matrix to determine the

color of each pixel.

45313.1 Image Processing

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

subplot to display the original matrix and the red, green, and blue component

matrices, as shown in Fig. 13.11.

matred = zeros(2,2,3);
matred(:,:,1) = mat(:,:,1);
matgreen = zeros(2,2,3);
matgreen(:,:,2) = mat(:,:,2);
matblue = zeros(2,2,3);
matblue(:,:,3) = mat(:,:,3);
subplot(2,2,1)
image(mat)
subplot(2,2,2)
image(matred)
subplot(2,2,3)
image(matgreen)
subplot(2,2,4)
image(matblue)

Superimposing the images from the three matrices matred, matgreen, and

matblue would be achieved by simply adding the three arrays together. The

following would result in the image from Fig. 13.10.

>> image(matred+matgreen+matblue)

0.5

1

1.5

2

2.5

0.5

1

1.5

2

2.5

0.5

1

1.5

2

2.5

0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

FIGURE 13.11

Separating red, green, and blue components.

454 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

PRACTICE 13.2

Create the 3 � 3 (� 3) true-color matrix shown in Fig. 13.12 (the axes are defaults).

13.1.3 Image Files

Images that are stored in various formats, such as JPEG, TIFF, PNG, GIF, and
BMP, can be manipulated in MATLAB. Built-in functions, such as imread

and imwrite, read from and write to various image file formats. Some images

are stored as unsigned 8-bit data (uint8), some as unsigned 16-bit (uint16),
and some are stored as double.

For example, the following reads a JPEG image into a 3D matrix; it can be seen

from the size and class functions that this was stored as a uint8 RGB matrix.

>> porchimage = imread('snowyporch.JPG');
>> size(porchimage)
ans =

2848 4272 3
>> class(porchimage)
ans =

'uint8'

FIGURE 13.12

Create this true-color matrix.

45513.1 Image Processing

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The image is stored as a true-color matrix and has 2848 � 4272 pixels.

The image function displays the matrix as an image, as shown in Fig. 13.13.

>> image(porchimage)

The function imshow can also be used to display an image.

The image can be manipulated by modifying the numbers in the image matrix.

For example, multiplying every number by 0.5 will result in a range of values

from 0 to 128 instead of from 0 to 255. As the larger numbers represent brighter
hues, this will have the effect of dimming the hues in the pixels, as shown in

Fig. 13.14.

>> dimmer = 0.5*porchimage;
>> image(dimmer)

The function imwrite is used to write an image matrix to a file in a specified

format:

>> imwrite(dimmer, 'dimporch.JPG')

Images can also be stored as an indexed image rather than RGB. In that case, the

colormap is usually stored with the image and will be read in by the imread

function.

500 1000 1500 2000 2500 3000 3500 4000

500

1000

1500

2000

2500

FIGURE 13.13

Image from a JPEG file displayed using image.

456 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

13.2 INTRODUCTION TO APPS AND GRAPHICAL USER
INTERFACES

Apps in MATLAB are programs that allow users to have input using graphical
interfaces, such as pushbuttons, sliders, radio buttons, toggle buttons, pop-up

menus, and so forth. In MATLAB, there are apps that can be created within

Figure Windows. These can be created programmatically from scratch, or
(for now) using the built-in Graphical User Interface Development Environ-

ment (GUIDE), which allows the user to graphically lay out the GUI and

MATLAB generates the code for it automatically. In the future, GUIDE will
be removed. The newer App Designer creates apps in UI Figure Windows. Like

GUIDE, App Designer allows the user to graphically lay out the app, and the

code is generated automatically. The code that App Designer creates is based
on objects.

In this section, the programming method of creating graphical objects and
allowing the user to interact with them will be introduced. We use the term

GUIs for these. In the next section, these concepts are reinforced using App

Designer. GUIDE is not covered in this book.

13.2.1 GUI Basics

GUIs are an implementation of the handle classes that were introduced in

Chapter 11, so there is a hierarchy. For example, the parent may be a

500 1000 1500 2000 2500 3000 3500 4000

500

1000

1500

2000

2500

FIGURE 13.14

Image dimmed by manipulating the matrix values.

45713.2 Introduction to Apps and Graphical User Interfaces

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

FigureWindow and its childrenwould be graphics objects, such as pushbuttons

and text boxes.

The parent user interface object can be a figure, uipanel, or uibuttongroup.

A figure is a FigureWindow created by the figure function. A uipanel is ameans
of grouping together user interface objects (the “ui” stands for user interface).

A uibuttongroup is a means of grouping together buttons (both radio buttons

and toggle buttons).

A Figure Window is the parent of any GUI. Just calling the figure function will
bring up a blank Figure Window; storing the handle in a variable allows us to

manipulate its properties, as we have seen in Chapter 11.

>> f = figure;
>> f.Position
ans =

616 598 560 420

The position vector specifies [left bottom width height]. The first two num-

bers, the left and bottom, are the distance that the lower left corner of the figure

box is from the lower left of the monitor screen (first from the left and then
from the bottom). The last two are the width and height of the figure box itself.

All of these are in the default units of pixels.

>> f.Visible
ans =

'on'

The ‘Visible’ property ‘on’ means that the Figure Window can be seen. When

creating a GUI, however, the normal procedure is to create the parent

Figure Window but make it invisible. Then, all user interface objects are added
to it and properties are set. When everything has been completed the GUI is

made visible.

If the figure is the only Figure Window that has been opened, then it is the cur-

rent figure. Using gcfwould be equivalent to f in that case. Recall that the parent

of a figure window is the screen; this could be obtained with either f.Parent or
groot.

Most user interface objects are created using the uicontrol function. Pairs of

arguments are passed to the uicontrol function, consisting of the name of a
property as a character vector and then its value. The default is that the object

is created in the current figure; otherwise, a parent can be specified as in

uicontrol(parent,…). The ‘Style’ property defines the type of object, as a
character vector. For example, ‘text’ is the Style of a static text box, which

is normally used as a label for other objects in the GUI or for instructions.

The following example creates a GUI that just consists of a static text box in

a Figure Window. The figure is first created, but made invisible. The color

458 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

is white, and it is given a position. Storing the handle of this figure in

a variable allows the function to refer to it later on, to set properties, for
example.

The uicontrol function is used to create a text box, position it (the vector spec-
ifies the [left bottom width height] within the Figure Window itself), and put

some text in it. Note that the position is within the Figure Window, not within

the screen.

A name is put on the top of the figure. The movegui function moves the GUI
(the figure) to the center of the screen. Finally, when everything has been

completed, the GUI is made visible.

simpleGui.m

function simpleGui
% simpleGui creates a simple GUI with just a static text box
% Format: simpleGui or simpleGui()
% Create the GUI but make it invisible for now while
% it is being initialized
f = figure('Visible', 'off','Color','white','Position',...
[300, 400, 450,250]);
htext = uicontrol('Style','text','Position', ...
[200,50, 100, 25], 'String','My First GUI');
% Put a name on it and move to the center of the screen
f.Name = 'Simple GUI';
movegui(f,'center')
% Now the GUI is made visible
f.Visible = 'on';
end

The Figure Window shown in Fig. 13.15 will appear in themiddle of the screen.

The static text box requires no interaction with the user, so although this exam-
ple shows some of the basics, it does not allow any graphical interface with

the user.

Note that, as of R2021a, the new name¼value syntax could be used in the

figure and uicontrol functions, as in:

f = figure(Visible = 'off', Color = 'white', ...
Position = [300, 400, 450,250]);

When the ‘Units’ property of objects is set to ‘Normalized’, this means that

rather than specifying in pixels the position, it is done as a percentage. This

allows the Figure Window to be resized without changing the way that the
GUI appears. It also means that GUIs will look the same on different screen

sizes. Normalized units for the figure means as a percentage of the screen,

whereas Normalized units for a uicontrol object means as a percentage of
the Figure Window. For example, the function simpleGuiNormalized is a version

of the first GUI example that uses normalized units:

45913.2 Introduction to Apps and Graphical User Interfaces

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

simpleGuiNormalized.m

function simpleGuiNormalized
% simpleGuiNormalized creates a GUI with just a static text box
% Format: simpleGuiNormalized or simpleGuiNormalized()
% Create the GUI but make it invisible for now while
% it is being initialized
f = figure('Visible', 'off','Color','white','Units',...
'Normalized', 'Position', [.25, .5, .35, .3]);

htext = uicontrol('Style','text','Units', 'Normalized', ...
'Position', [.45, .2, .2, .1], ...
'String','My First GUI');

% Put a name on it and move to the center of the screen
f.Name = 'Simple GUI Normalized';
movegui(f,'center')

% Now the GUI is made visible
f.Visible = 'on';
end

For example, the first two numbers in the position vector for the figure

[.25 .5 .35 .3] specify that the lower left corner of the Figure Window is
one-quarter of the way from the left and half-way from the bottom of the

screen. Of course, the figure is then moved to the middle of the screen,

FIGURE 13.15

Simple GUI with a static text box.

460 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

but the Position vector is still useful in that it also specifies the width and

height of the figure.

Because Normalized units are more general and more intuitive, for the most

part they will be used for the remaining examples rather than pixels.

13.2.2 Text Boxes, Push Buttons, and Sliders

Now that we have seen the basic algorithm for a GUI, we will add user

interaction.

In the next example, we will allow the user to enter text in an editable text box,

and then the GUI will print the user’s input in red. In this example, there will be
user interaction. First, the user must type in the text and, once this happens, the

user’s entry in the editable text box will no longer be shown, but, instead,

the text that the user typed will be displayed in a larger red font in a static text
box. When the user’s action (which is called an event) causes a response, what

happens is that a callback function is called or invoked. The callback function is

the part of the code in which the text is read in and then printed in a larger red
font. This is sometimes called event-driven programming: the event triggers

an action.

The callback function must be in the path; one way to do this is to make it a

nested function within the GUI function. The algorithm for this example is
as follows:

n Create the Figure Window, but make it invisible.

n Make the color of the figure white, put a title on it, and move it to the

center.
n Create a static text box with an instruction to enter some text.

n Create an editable text box.

n The Style of this is ‘edit’.
n The callback function must be specified as the user’s entry of a text

necessitates a response (the function handle of the nested function is

used for this).
n Make the GUI visible so that the user can see the instruction and type in

the text.

n When the text is entered, the callback function callbackfn is called. Note
that in the function header, there are two input arguments, hObject and

eventdata. The input argument hObject refers to the handle of the

uicontrol object that called it; eventdata stores in a structure information
about the event that triggered the call to the callback function (this varies

depending on the type of object and is not always used).

46113.2 Introduction to Apps and Graphical User Interfaces

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n The algorithm for the nested function callbackfn is:

n make the previous GUI objects invisible

n get the text that the user typed (note that either hObject or the object
handle name huitext can be used to refer to the object in which the text

was entered)
n create a static text box to print the text in red with a larger font

n make this new object visible

guiWithEditbox.m

function guiWithEditbox

% guiWithEditbox has an editable text box
% and a callback function that prints the user's
% text in red
% Format: guiWithEditbox or guiWithEditbox()

% Create the GUI but make it invisible for now
f = figure('Visible', 'off','Color','white','Units',...

'Normalized','Position', [.25 .5 .4 .2]);
% Put a name on it and move it to the center of the screen
f.Name = 'GUI with editable text';
movegui(f,'center')
% Create two objects: a box where the user can type and
% edit text and also a text title for the edit box
hsttext = uicontrol('Style','text',...

'BackgroundColor','white','Units','Normalized',...
'Position',[.2 .6 .6 .2],...
'String','Enter your text here');

huitext = uicontrol('Style','edit', 'Units',...
'Normalized','Position',[.3 .3 .4 .2], ...
'Callback',@callbackfn);

% Now the GUI is made visible
f.Visible = 'on';

% Call back function
function callbackfn(hObject,eventdata)

% callbackfn is called by the 'Callback' property
% in the editable text box
set([hsttext huitext],'Visible','off');
% Get the text that the user entered and print
% it in big red letters
printstr = huitext.String;
hstr = uicontrol('Style','text',...

'BackgroundColor','white','Units',...
'Normalized','Position',[.1 .3 .8 .4],...
'String',printstr,...
'ForegroundColor','Red','FontSize',30);

hstr.Visible = 'on';
end

end

462 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

When the Figure Window is first made visible, the static text and the editable

text box are shown. In this case, the user entered ‘Hello and how are you?’ Note
that to enter the text, the user must first click the mouse in the editable text box.

The text that was entered by the user is shown in Fig. 13.16.

After the user enters this text and hits the Enter key, the callback function is exe-

cuted; the results are shown in Fig. 13.17. The callback function sets the Visible

property to off for both of the original objects by referring to their handles. As
the callback function is a nested function, the handle variables can be used.

It then gets the text and writes it in a new static text box in red.

FIGURE 13.16

Text entered by user in editable text box.

FIGURE 13.17

The result from the callback function.

46313.2 Introduction to Apps and Graphical User Interfaces

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Nowwewill add a pushbutton to the GUI. This time, the user will enter text, but

the callback function will be invoked when the pushbutton is pushed.

guiWithPushbutton.m

function guiWithPushbutton
% guiWithPushbutton has an editable text box and a pushbutton
% Format: guiWithPushbutton or guiWithPushbutton()

% Create the GUI but make it invisible for now while
% it is being initialized
f = figure('Visible', 'off','Color','white','Units',...

'Normalized', 'Position',[.25 .5 .5 .3]);
hsttext = ...
uicontrol('Style','text','BackgroundColor','white',...

'Units','Normalized','Position',[.2 .7 .6 .2],...
'String','Enter text here, then push the button');

huitext = uicontrol('Style','edit','Units','Normalized',...
'Position',[.3 .5 .4 .2]);

f.Name = 'GUI with pushbutton';
movegui(f,'center')
% Create a pushbutton that says "Push me!!"
hbutton = uicontrol('Style','pushbutton','String',...

'Push me!!', 'Units','Normalized','Position',...
[.6 .1 .3 .2], 'Callback',@callbackfn);

% Now the GUI is made visible
f.Visible = 'on';

% Call back function
function callbackfn(hObject,eventdata)

% callbackfn is called by the 'Callback' property
% in the pushbutton
set([hsttext huitext hbutton],'Visible','off');
printstr = huitext.String;
if isempty(printstr)

printstr = 'Enter something next time!';
end
hstr = uicontrol('Style','text','BackgroundColor',...

'white', 'Units', 'Normalized','Position',...
[.1 .3 .8 .4], 'String', printstr, ...
'ForegroundColor','Red','FontSize',30);

hstr.Visible = 'on';
end

end

In this case, the user types the text into the edit box. Hitting Enter, however,
does not cause the callback function to be called; instead, the user must push

the button with the mouse. The callback function is associated with the

pushbutton object. Therefore, pushing the button will bring up the text in a

464 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

larger red font. The initial configuration with the pushbutton is shown in

Fig. 13.18.

PRACTICE 13.3

Create a GUI that will convert a length from inches to centimeters. The GUI should have an edit-

able text box in which the user enters a length in inches, and a pushbutton that says, “Convert

me!” Pushing the button causes the GUI to calculate the length in centimeters and display that.

The callback function that accomplishes this should leave all objects visible. That means that the

user can continue converting lengths until the Figure Window is closed. The GUI should display a

default length to begin with (e.g., 1 inch). Then, when the user enters a length and pushes the

button, the Figure Window will show the new calculated length in centimeters.

Another GUI object that can be created is a slider. The slider object has a numer-

ical value and can be controlled by either clicking on the arrows to move the

value up or down, or by sliding the bar with the mouse. By default, the numer-
ical value ranges from 0 to 1, but these values can be modified using the ‘Min’

and ‘Max’ properties.

The function guiSlider creates in a Figure Window a slider that has a minimum
value of 0 and a maximum value of 5. It uses text boxes to show the minimum

and maximum values, and also the current value of the slider.

FIGURE 13.18

GUI with a push button.

46513.2 Introduction to Apps and Graphical User Interfaces

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

guiSlider.m

function guiSlider
% guiSlider is a GUI with a slider
% Format: guiSlider or guiSlider()

f = figure('Visible', 'off','Color','white','Units',...
'Normalized', 'Position', [.25 .5 .4 .2]);

% Minimum and maximum values for slider
minval = 0;
maxval = 5;
% Create the slider object
slhan = uicontrol('Style','slider', 'Units', 'Normalized', ...

'Position',[.3 .5 .4 .2], 'Min', minval, 'Max', maxval,...
'SliderStep', [0.5 0.5], 'Callback', @callbackfn);

% Text boxes to show the minimum and maximum values
hmintext = uicontrol('Style','text','BackgroundColor',...

'white', 'Units', 'Normalized',...
'Position', [.1 .5 .1 .1], 'String', num2str(minval));

hmaxtext = uicontrol('Style', 'text','BackgroundColor',...
'white', 'Units', 'Normalized',...
'Position', [.8 .5 .1 .1], 'String', num2str(maxval));

% Text box to show the current value (off for now)
hsttext = uicontrol('Style','text','BackgroundColor','white',...

'Units', 'Normalized',...
'Position',[.4 .3 .2 .1],'Visible', 'off');

movegui(f,'center')
f.Name = 'Slider Example';
f.Visible = 'on';

% Call back function displays the current slider value

function callbackfn(hObject,eventdata)
% callbackfn is called by the 'Callback' property
% in the slider
num = slhan.Value;
set(hsttext,'Visible','on','String',num2str(num))

end
end

Fig. 13.19 shows the configuration once the user has moved the slider.

PRACTICE 13.4

Use the Help browser to find the property that controls the increment value on the slider, and

modify the guiSlider function to move in increments of 0.5 when the arrow is used.

466 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

GUI functions can have multiple callback functions. In the example

guiWithTwoPushbuttons, there are two buttons that could be pushed (see
Fig. 13.20). Each of them has a unique callback function associated with it.

If the top button is pushed, its callback function prints red exclamation points

(as shown in Fig. 13.21). If the bottom button is instead pushed, its callback
function prints blue asterisks.

FIGURE 13.19

GUI with slider result shown.

FIGURE 13.20

GUI with two pushbuttons and two callback functions.

FIGURE 13.21

The result from the first callback function.

46713.2 Introduction to Apps and Graphical User Interfaces

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

function guiWithTwoPushbuttons.m

function guiWithTwoPushbuttons
% guiWithTwoPushbuttons has two pushbuttons, each
% of which has a separate callback function
% Format: guiWithTwoPushbuttons

% Create the GUI but make it invisible for now while
% it is being initialized

f = figure('Visible', 'off','Color','white','Units',...
'Normalized', 'Position', [.25 .5 .4 .2]);

f.Name = 'GUI with 2 pushbuttons';
movegui(f,'center')

% Create a pushbutton that says "Push me!!"
hbutton1 = uicontrol('Style','pushbutton','String',...

'Push me!!', 'Units', 'Normalized',...
'Position',[.3 .6 .4 .2], ...
'Callback',@callbackfn1);

% Create a pushbutton that says "No, Push me!!"
hbutton2 = uicontrol('Style','pushbutton','String',...

'No, Push me!!', 'Units', 'Normalized',...
'Position',[.3 .3 .4 .2], ...
'Callback',@callbackfn2);

% Now the GUI is made visible
f.Visible = 'on';

% Call back function for first button
function callbackfn1(hObject,eventdata)

% callbackfn is called by the 'Callback' property
% in the first pushbutton

set([hbutton1 hbutton2],'Visible','off');
hstr = uicontrol('Style','text',...

'BackgroundColor', 'white', 'Units',...
'Normalized','Position',[.4 .5 .2 .2],...
'String','!!!!!', ...
'ForegroundColor','Red','FontSize',30);

hstr.Visible = 'on';
end

% Call back function for second button
function callbackfn2(hObject,eventdata)

% callbackfn is called by the 'Callback' property
% in the second pushbutton

set([hbutton1 hbutton2],'Visible','off');
hstr = uicontrol('Style','text',...

'BackgroundColor','white', 'Units', ...
'Normalized', 'Position',[.4 .5 .2 .2],...
'String','*****', ...
'ForegroundColor','Blue','FontSize',30);

hstr.Visible = 'on';
end

end

468 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

If the first button is pushed, the first callback function is called, which would

produce the result in Fig. 13.21.

It is also possible to have one callback function invoked, or called, by multiple

objects. In the example with two pushbuttons, instead of having one callback
function associated with each pushbutton, we could have just one callback

function. In that case, the value of the input argument hObject would be

checked to determine which object called it. Amodified GUI to accomplish this
is shown next.

function guiWithTwoPushbuttonsii.m

function guiWithTwoPushbuttonsii
% guiWithTwoPushbuttonsii has two pushbuttons
% but just one callback function
% Format: guiWithTwoPushbuttonsii

% Create the GUI but make it invisible for now while
% it is being initialized
f = figure('Visible', 'off','Color','white','Units',...

'Normalized', 'Position', [.25 .5 .4 .2]);
f.Name = 'GUI with 2 pushbuttons';
movegui(f,'center')

% Create a pushbutton that says "Push me!!"
hbutton1 = uicontrol('Style','pushbutton','String',...

'Push me!!', 'Units', 'Normalized',...
'Position',[.3 .6 .4 .2], ...
'Callback',@callbackfn);

% Create a pushbutton that says "No, Push me!!"
hbutton2 = uicontrol('Style','pushbutton','String',...

'No, Push me!!', 'Units', 'Normalized',...
'Position',[.3 .3 .4 .2], ...
'Callback',@callbackfn);

% Now the GUI is made visible
f.Visible = 'on';

% Call back function for both buttons
function callbackfn(hObject,eventdata)

% callbackfn is called by the 'Callback' property

set([hbutton1 hbutton2],'Visible','off');
hstr = uicontrol('Style','text',...

'BackgroundColor', 'white', 'Units',...
'Normalized','Position',[.4 .5 .2 .2],...
'FontSize',30);

if hObject == hbutton1
hstr.String = '!!!!!';
hstr.ForegroundColor = 'Red';

else
hstr.String = '*****';
hstr.ForegroundColor = 'Blue';

end
hstr.Visible = 'on';

end

end

46913.2 Introduction to Apps and Graphical User Interfaces

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

In this example, the value of the input argument hObject was used by the call-

back function. The second input argument, eventdata, was not used, however.
Whenever any callback function is called, both arguments are automatically

passed to the callback function. If the callback function is not going to use

one or both, the tilde can be put in the function header instead of the name
of the input argument. In the previous example, the header could have been:

function callbackfn(hObject,�)

13.2.3 Plots and Images in GUIs

Plots and images can be imbedded in a GUI. The next example guiSliderPlot

shows a plot of sin(x) from 0 to the value of a slider bar. The axes are positioned
within the Figure Window using the axes function, and then when the slider is

moved the callback function plots. Note that the default Units property for an

axes object is Normalized.

function guiSliderPlot.m

function guiSliderPlot
% guiSliderPlot has a slider
% It plots sin(x) from 0 to the value of the slider
% Format: guiSliderPlot

f = figure('Visible', 'off', 'Units', 'Normalized',...
'Position', [.2 .5 .4 .3], 'Color', 'white');

% Minimum and maximum values for slider
minval = 0;

maxval = 4*pi;

% Create the slider object
slhan = uicontrol('Style','slider','Units','Normalized',...

'Position',[.3 .7 .4 .1], ...
'Min', minval, 'Max', maxval,'Callback', @callbackfn);

% Text boxes to show the min and max values and slider value
hmintext = uicontrol('Style','text','BackgroundColor', 'white', ...

'Units','Normalized','Position', [.1 .7 .1 .1],...
'String', num2str(minval));

hmaxtext = uicontrol('Style','text', 'BackgroundColor', 'white',...
'Units', 'Normalized','Position', [.8 .7 .1 .1], ...
'String', num2str(maxval));

hsttext = uicontrol('Style','text','BackgroundColor', 'white',...
'Units','Normalized', 'Position', [.45 .8 .1 .1],...
'Visible','off');

% Create axes handle for plot
axhan = axes('Position', [.2 .1 .6 .5]);

f.Name = 'Slider Example with sin plot';
movegui(f,'center')
f.Visible = 'on';

470 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

% Call back function displays the current slider value & plots sin
function callbackfn(�,�)

% callbackfn is called by the 'Callback' property
% in the slider
num = slhan.Value;
set(hsttext,'Visible','on','String',num2str(num))
x = 0:num/50:num;
y = sin(x);
plot(x,y)
xlabel('x')
ylabel('sin(x)')

end
end

After the slider bar is moved, the callback function plots sin(x) from 0 to the
position of the slider bar. Figure 13.22 shows the configuration of the window,

with the slider bar, static text boxes to the left and right showing the minimum

and maximum values, and the axes positioned underneath with the plot.

Images can also be placed in GUIs, again using axes to locate the image. In a
variation on the previous example, the next example displays an image and

uses a slider to vary the brightness of the image. The result is shown in
Fig. 13.23.

FIGURE 13.22

Plot shown in a GUI Figure Window.

47113.2 Introduction to Apps and Graphical User Interfaces

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

guiSliderImage.m

function guiSliderImage
% guiSliderImage has a slider
% Displays an image; slider dims it
% Format: guiSliderImage

f = figure('Visible', 'off', 'Units', 'Normalized',...
'Position', [.2 .5 .4 .3], 'Color', 'white');

% Minimum and maximum values for slider
minval = 0;

maxval = 1;
% Create the slider object
slhan = uicontrol('Style','slider','Units','Normalized',...

'Position',[.3 .7 .4 .1], ...
'Min', minval, 'Max', maxval,'Callback', @callbackfn);

% Text boxes to show the min and max values and slider value
hmintext = uicontrol('Style','text','BackgroundColor', 'white', ...

'Units','Normalized','Position', [.1 .7 .1 .1],...
'String', num2str(minval));

hmaxtext = uicontrol('Style','text', 'BackgroundColor', 'white',...
'Units', 'Normalized','Position', [.8 .7 .1 .1], ...
'String', num2str(maxval));

hsttext = uicontrol('Style','text','BackgroundColor', 'white',...
'Units','Normalized', 'Position', [.45 .8 .1 .1],...
'Visible','off');

% Create axes handle for plot
axhan = axes('Position', [.2 .1 .6 .5]);

f.Name = 'Slider Example with an image';
movegui(f,'center')
f.Visible = 'on';

% Call back function displays the current slider value & image
function callbackfn(�,�)

% callbackfn is called by the 'Callback' property
% in the slider
num = slhan.Value;

set(hsttext,'Visible','on','String',num2str(num))
myimage1 = imread('snowyporch.JPG');
dimmer = num*myimage1;
image(dimmer)

end
end

13.2.4 Button Groups

This section illustrates radio buttons, and grouping objects together; in this
case, in a button group.

The next GUI presents the user with a choice of colors using two radio buttons,
only one of which can be chosen at any given time. The GUI prints text to the

right of the radio buttons, in the chosen color.

472 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The function uibuttongroup creates a mechanism for grouping together the

buttons. As only one button can be chosen at a time, there is a type of callback
function called ‘SelectionChangedFcn’ that is called when a button is chosen

(note: prior to R2014b, this was named ‘SelectionChangeFcn’).

This function gets from the button group which button is chosen with the

‘SelectedObject’ property. It then chooses the color based on this. This property
is set initially to the empty vector, so that neither button is selected; the default

is that the first button would be selected.

guiWithButtongroup.m

function guiWithButtongroup
% guiWithButtongroup has a button group with 2 radio buttons
% Format: guiWithButtongroup

% Create the GUI but make it invisible for now while
% it is being initialized
f = figure('Visible', 'off','Color','white','Units',...

'Normalized', 'Position',[.2 .5 .4 .3]);

% Create a button group
grouph = uibuttongroup('Parent',f,'Units','Normalized',...

'Position',[.2 .5 .4 .4], 'Title','Choose Color',...
'SelectionChangedFcn',@whattodo);

% Put two radio buttons in the group
toph = uicontrol(grouph,'Style','radiobutton',...

'String','Blue','Units','Normalized',...
'Position', [.2 .7 .4 .2]);

FIGURE 13.23

GUI with an image and slider for brightness.

47313.2 Introduction to Apps and Graphical User Interfaces

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

both = uicontrol(grouph, 'Style','radiobutton',...
'String','Green','Units','Normalized',...
'Position',[.2 .4 .4 .2]);

% Put a static text box to the right
texth = uicontrol('Style','text','Units','Normalized',...

'Position',[.6 .5 .3 .3],'String','Hello',...
'Visible','off','BackgroundColor','white');

grouph.SelectedObject = []; % No button selected yet
f.Name = 'GUI with button group';
movegui(f,'center')

% Now the GUI is made visible
f.Visible = 'on';

function whattodo(�, �)
% whattodo is called by the 'SelectionChangedFcn' property
% in the button group

which = get(grouph,'SelectedObject');

if which == toph
texth.ForegroundColor = 'blue';

else
texth.ForegroundColor = 'green';

end

texth.Visible = 'on';

end

end

Figure 13.24 shows the initial configuration of the GUI: the button group is in
place, as are the buttons (but neither is chosen).

Once a radio button has been chosen, the whattodo function chooses the color
for the text, which is printed in a static text box on the right, as shown in

Fig. 13.25.

13.3 APP DESIGNER

We have seen how to create GUI functions that include objects such as push

buttons and sliders, and how to write callback functions that allow the user’s
actions to control what the code does. App Designer allows the user to graph-

ically lay out similar objects, which are called components. However, there are

more types of components than what we had with GUIs, and the code that is
generated is all object-based. Thus, the use of App Designer, which creates app

classes derived from a superclass, will reinforce the OOP concepts covered in

474 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Chapter 11. Also, App Designer creates UI Figure windows, whereas GUIs use
Figure Windows.

13.3.1 Intro to App Designer

There are two ways to launch App Designer. You can click on Design Apps from
the Apps tab. Typing the command appdesigner in the Command Window

will also bring up App Designer.

>> appdesigner

FIGURE 13.25

Button Group: Choice of Color for Text.

FIGURE 13.24

Button Group with Radio Buttons.

47513.3 App Designer

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The start page has tutorials, examples, and Recent Apps that you have created.

To begin a new app, choose Blank App. Figure 13.26 shows the blank App
Designer; in the middle is the blank layout under “Design View,” which is

called the canvas. The Component Library on the left shows the icons of the

components that can be created. On the right there is the Component Browser.
In the Component Browser, the default name for the blank figure, app.UIFigure,

can be seen.

On the top of the Component Library, the Common components can be seen

(including axes, buttons, labels, sliders, and spinners). Scrolling down, one can

see the remainder of the Component Library, including the Containers,
Figure Tools, and Instrumentation components. The Containers include Grid

Layout, Panel, and Tab Group. The Figure Tools include Context Menu, Menu

Bar, and Toolbar. Finally, the Instrumentation Components include gauges,
knobs, lamps, and switches.

Clicking on “Code View” instead of “Design View” shows the code that has

been created for the blank app. App Designer creates a class named app1 that

is derived from a MATLAB apps superclass called matlab.apps.AppBase. The

FIGURE 13.26

App Designer layout.

476 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

properties will consist of all of the components; for now, there is just one prop-

erty, which is the UI Figure Window. There is also a private methods block, and
a public methods block.

classdef app1 < matlab.apps.AppBase
% Properties that correspond to app components
properties (Access = public)

UIFigure matlab.ui.Figure
end

% Component initialization
methods (Access = private)

% Create UIFigure and components
function createComponents(app)

% Create UIFigure and hide until all components created
app.UIFigure = uifigure('Visible', 'off');
app.UIFigure.Position = [100 100 640 480];
app.UIFigure.Name = 'MATLAB App';

% Show the figure after all components are created
app.UiFigure.Visible = 'on';

end
end

%App creation and deletion
methods (Access = public)

% Construct app
function app = app1()

% Create UIFigure and components
createComponents(app)

% Register the app with App Designer
registerApp(app, app.UIFigure)

if nargout == 0
clear app

end
end

% Code that executes before app deletion
function delete(app)

% Delete UIFigure when app is deleted
delete(app.UIFigure)

end

end
end

Themethods are used for all of the app functions, including eventually callback

functions. For now, with just a blank UI Figure Window, the public methods
include the constructor function app1, and a function delete that deletes the

figure when the app is deleted. The constructor calls a private function create-

Components, which creates a UI Figure using the uifigure function. It then uses

47713.3 App Designer

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

the dot notation to set properties for the app.UIFigure, including its Name and

Position.

Also, when Code View is in use, the Component Library no longer shows on the

left. Instead, there is a Code Browser window on top, and an App Layout win-
dow on the bottom.

With just a blank canvas in Design View, none of the code in Code View is

editable.

We have seen the code that is generated with just a blank canvas. In the Design

View of the App Designer environment, components can be dragged from the
Component Library onto the blank canvas. When this is done, the code will be

updated to create a new property for each component, and to initialize some of

its properties (for example, the Position property will be based on the location
to which the component was dragged). Properties can then be modified in the

Component Properties Window to the right of the layout.

For example, one can drag a Label (generically named ‘Label’!) into the design

area. Because clicking on the label in the Design View chooses the label, this

brings up some of the label properties on the bottom right. Properties such
as the text on the label, its justification, font name, font size, and so forth

can then be modified. Each of these will modify the code that is created.

Assuming that no properties have been modified, and there is just a generic

label in the canvas, most of the code remains the same as with just a blank
UI Figure Window. Choosing Code View will show that the class app1 now

has a new property Label, and the createComponents method creates a Label

using the uilabel function and gives it a Position. The added code is shown
in bold here (not in App Designer itself).

classdef app1 < matlab.apps.AppBase
% Properties that correspond to app components
properties (Access = public)

UIFigure matlab.ui.Figure
Label matlab.ui.control.Label

end

% Create UIFigure and components
function createComponents(app)

% Create Label
app.Label = uilabel(app.UIFigure);
app.Label.Position = [421 431 30 15];

end
end

Modifying a property, such as changing the text of the label in the Label Prop-

erties window to be ‘Hello’ instead of ‘Label’ will modify the code in createCom-

ponents to:

Note

that the dot notation is

used twice here, as in

app.UIFigure.Name.

478 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

% Create HelloLabel
app.HelloLabel = uilabel(app.UIFigure);
app.HelloLabel.Position = [421 431 30 15];
app.HelloLabel.Text = 'Hello';

To run the app, click on the green Run arrow. This brings up a dialog box that

asks for the name of the file that will be created; the default name that shows is

“app1.mlapp”. Changing the name to “MyHelloLabel.mlapp” will create a file
with this name and bring up a UI Figure Window.

App Designer creates one file with the extension ‘.mlapp’.

Although this example shows the basics of App Designer and the object-based

code that it creates, it did not involve any callbacks.

13.3.2 UI Figure Functions

As we have seen in Section 13.2, traditional GUIs create different types of

objects by specifying the Style property in the uicontrol function. For example,

a slider is created with uicontrol(‘Style’, ‘slider’). By contrast, App Designer
uses separate functions to create the different component types; for example,

a slider is created with the uislider function. In the previous section, we saw

two of these functions: uifigure, which creates the UI Figure Window, and uila-
bel, which creates a static text box.

Although typically these functions are only used within App Designer, all of

these functions could actually be called directly from the Command Window
or from any script or function. For example, the following code will bring up

the UI Figure Window shown in Fig. 13.27.

>> uif = uifigure;
>> uif.Name = 'Simple UI Fig Slider';
>> uislid = uislider(uif);

By creating a UI Figure Window first, and then passing its handle to the uislider

function, the slider is put inside of that UI Figure Window (otherwise, a new UI

Figure Window would be created for the slider). The properties of the slider can
be inspected, for example,

>> uislid
uislid =

Slider (0) with properties:

Value: 0
Limits: [0 100]

MajorTicks: [0 20 40 60 80 100]
MajorTickLabels: {'0' '20' '40' '60' '80' '100'}

Orientation: 'horizontal'
ValueChangedFcn: ' '

ValueChangingFcn: ' '
Position: [100 100 150 3]

Show all properties

Note

that the label object has

been renamed.

47913.3 App Designer

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

For example, this shows that the value of the slider is 0. Of course, to do any-

thing with the value of the slider would require more complicated code with
callback functions. For sliders, there are two:

‘ValueChangedFcn’: executes when the slider value has been changed

‘ValueChangingFcn’: executes as the slider is being moved

For example, the function uislideruilabel creates a UI Figure Window with a

slider and a label. When the slider has beenmoved, the ‘ValueChangedFcn’ call-

back is called, which puts the value of the slider in the label, as seen in
Fig. 13.28. Many of the concepts here are similar to those used in GUI callbacks.

The function uislideruilabel is a function that has a nested callback function,

whatslid. Because the whatslid function is nested, the variable scope is such that
the variables uilab and uislid can be used within the callback function without

passing them. The callback function has two input arguments representing the

source of the callback (in this case uislid) and the event, just like GUI callback
functions.

FIGURE 13.27

Simple slider in UI figure window.

480 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

uislideruilabel.m

function uislideruilabel
uif = uifigure;
uif.Name = 'UI Fig Slider with Callback';
uislid = uislider(uif);
uilab = uilabel(uif,'Position',[150 200 30 15]);
uilab.Text = '0';

uislid.ValueChangedFcn = @whatslid;

function whatslid(source,event)
uilab.Text = num2str(round(uislid.Value));

end
end

The list of UI functions that create object components can be found in the App
Designer documentation. The documentation for each function describes the

properties that can be used for each, including all of the possible callback func-

tions. Of course, although these functions can be used programmatically as
shown in this section, it is not at all common to do so; rather, these functions

are used by App Designer.

FIGURE 13.28

Slider with label example.

48113.3 App Designer

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

13.3.3 App Designer Examples

An advantage of App Designer is that it will create much of the code automat-
ically, and because it is based on objects, the private properties and methods

protect the apps that are created.

As an example of an app that uses a callback, an app will be created that is

similar to the previous example in which there is a slider and a label that

shows the value of the slider. Therefore, in the Design view, a slider is dragged
onto the canvas. Because it makes sense to label many components, such as

sliders, App Designer automatically creates a label when the component is

dragged into the design area. By default, the label is to the left of the slider.
In Design View, because there is one component, the slider, the properties

can be inspected and edited by clicking on the component (app.Slider) in

the Component Browser.

The Code View shows that three properties have been created:

properties (Access = public)
UIFigure matlab.ui.Figure
Slider matlab.ui.control.Slider
SliderLabel matlab.ui.control.Label

end

The constructor and other methods are similar to what was seen in a previous
example. App Designer does not automatically create callback function stubs.

Instead, on the top of the Component Browser, there is a choice of Inspector or

Callbacks. Selecting the Callbacks tab brings up two possible callback func-
tions. For example, enter the name “SliderValueChanged” for the Value-

ChangedFcn. This creates a new function, seen in Code View:

% Value changed function: Slider
function SliderValueChanged(app, event)

value = app.Slider.Value;
end

In the function, an example is given that shows how to reference the Value

property of the slider, but the function is editable. Most of the code has a gray
background, but the white box in the SliderValueChanged function indicates

that part of the function can be edited. Modifying the function body as follows

will put the value of the slider in the label.

function SliderValueChanged(app, event)
value = app.Slider.Value;
app.SliderLabel.Text = num2str(round(value));

end

In Design View, clicking on either the slider or its label will change the Prop-
erties window. For example, clicking on the label and then Configuration under

Label Properties allows one to change the initial label of “Slider” to “0”, which

is the initial value of the slider.

482 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

To change properties of any of the objects, one can click on the object name in

the Component Browser. For example, clicking on “app.UIFigure” in the Com-
ponent Browser shows the “UI Figure Properties”. That allows us to change the

title of the UI Figure Window, for example to “App with Slider”. Do this by

scrolling down to Identifiers, and change the Name Property.

When the app is executed, the app is saved. Name it “slidertest”. After the slider

has been moved, the UI Figure window seen in Fig. 13.29 is created.

Unless the slider label was modified, the generic label “Slider” will show up
before the slider is moved. After that, the value of the slider will be shown in

the label text box. One way to fix this is to create a particular type of callback

function, a start-up function called StartupFcn, which can be used to specify
what you want to happen when the app first runs. By clicking on slidertest in

the Component Browser, and choosing Callbacks, a name can be given for

the StartupFcn. For example, if it is named StartMeUp, this will appear in the
Code View. It is editable, so a line can be added that initializes the slider label

to an empty character vector.

% Code that executes after component creation
function StartMeUp(app)

app.SliderLabel.Text = ' ';
end

FIGURE 13.29

App with slider and label.

48313.3 App Designer

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The ValueChangedFcn only executes when the slider has stopped moving. By

contrast, another callback function, the ValueChangingFcn, can specify what
to do while the slider is being changed. Notice that while the slider is changing,

the Value property is obtained from the event input parameter.

% Value changing function: Slider
function SliderValueChanging(app, event)

cv = event.Value;
app.SliderLabel.Text = num2str(round(cv));
app.SliderLabel.FontColor = [1 0 0];

end

Putting plots into apps uses a method that is very similar to GUIs: it is necessary
to first drag axes into the design layout, and then any plot will be placed within

the axes. For example, code was created by dragging axes into the canvas, and

also a push button. The pushbutton was named Plot! A callback function was
created for the push button, as follows:

% Button pushed function: PlotButton
function PlotButtonPushed(app, event)

x = –pi:0.1:pi;
y = sin(x);
plot(app.UIAxes, x, y, '*')

end

Thus, when the push button is pushed, the sin plot shows in the axes. App
Designer creates x, y, and z labels and a title by default.

In Code View, in between the line numbers and the code, there are boxes with

dashes in them for all code blocks. Clicking on one will collapse that code dis-
play, and turn the dash into a plus (which allows the code to be expanded). App

Designer code can get long, so this is a convenient way to display only the code

that you are interested in seeing. This is new as of R2018b.

13.4 SOUND FILES

A sound wave is an example of a continuous signal that can be sampled to result
in a discrete signal. In this case, sound waves traveling through the air are

recorded as a set of measurements that can then be used to reconstruct the orig-

inal sound signal, as closely as possible. The sampling rate, or sampling fre-

quency, is the number of samples taken per time unit, for example per

second. Sound signals are usually measured in Hertz (Hz).

In MATLAB, the discrete sound signal is represented by a vector and the fre-

quency is measured in Hertz. MATLAB has several MAT-files that store for var-

ious sounds the signal vector in a variable y and the frequency in a variable Fs.
These MAT-files include chirp, gong, laughter, splat, train, and handel. There

is a built-in function, sound, that will send a sound signal to an output device

such as speakers.

484 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The function call:

>> sound(y,Fs)

will play the sound represented by the vector y at the frequency Fs. For example,

to hear a gong, load the variables from the MAT-file and then play the sound

using the sound function:

>> load gong
>> sound(y,Fs)

Sound is a wave; the amplitudes are what are stored in the sound signal variable

y. These are supposed to be in the range from�1 to 1. The plot function can be
used to display the data. For example, the following script creates a subplot that

displays the signals from chirp and from train, as shown in Fig. 13.30.

chirptrain.m

% Display the sound signals from chirp and train
subplot(2,1,1)
load chirp
plot(y)
ylabel('Amplitude')
title('Chirp')
subplot(2,1,2)
load train
plot(y)
ylabel('Amplitude')
title('Train')

0 2000 4000 6000 8000 10000 12000 14000
-1

-0.5

0

0.5

1

A
m

pl
itu

de

Chirp

0 2000 4000 6000 8000 10000 12000 14000
-1

-0.5

0

0.5

1

A
m

pl
itu

de

Train

FIGURE 13.30

Amplitudes from chirp and train.

48513.4 Sound Files

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The first argument to the sound function can be an n x 2 matrix for stereo

sound. Also, the second argument can be omitted when calling the sound func-
tion, in which case the default sample frequency of 8192 Hz is used. This is the

frequency stored in the built-in sound MAT-files.

>> load train
Fs
Fs =

8192

Formore control over playing sound files, an audioplayer object can be created

using the audioplayer function, and then the sound can be played with the

play function. For example:

>> load handel
>> pl = audioplayer(y,Fs)
>> play(pl)

If you have amicrophone built in to your computer, or some other audio input
device, you can record sound from it, and play it back using the play function.

First, an audiorecorder object is created, and then the audio input is recorded

for a specified block of time using the recordblocking method. For example,
the following creates an aurdiorecorder object myvoice, and records from the

microphone for 3 seconds, and then plays it back.

>> myvoice = audiorecorder;
>> recordblocking(myvoice, 3)
>> play(myvoice);

The getaudiodata function can be used to get the amplitude vector of the audio,

so for example it could be plotted.

>> y = getaudiodata(myvoice);

PRACTICE 13.5

If you have speakers, try loading one of the soundMAT-files and use the sound function to play the

sound. Then, change the frequency; for instance, multiply the variable Fs by 2 and by 0.5, and play

these sounds again.

>> load train
>> sound(y, Fs)
>> sound(y, Fs*2)
>> sound(y, Fs*.5)

486 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Data Science and Machine Learning Supplement
Bias in Data Sets
If the training and testing sets are not representative of the entire population,

then the data will be biased, and the model will not be adequately prepared to

make predictions for the population. This can be a very serious problem. There
are some rather infamous cases of this in image processing ML data sets (for

facial recognition, for example). For example, if you are trying to build a model

that will be able to distinguish between images of cats and dogs, and your train-
ing set has 1000 images of dogs but only 50 images of cats, the model will be

much more adept at identifying dogs than cats. But, if most of the 1000 dog

images are of beagles, the model will likely have trouble identifying other types
of dogs. This is true not just for image processing. For all types of ML models, it

is imperative that the data set represents the population as a whole.

Built-in Image Files
There are several built-in image files that can be used in MATLAB. Some are

built in as .jpg files, e.g., ‘street1.jpg’. Others are .mat files that store variables.
For example, the file cape.mat stores three variables:

>> clear
>> load cape.mat
>> whos
Name Size Bytes Class Attributes

X 360x360 1036800 double
caption 2x55 220 char
map 192x3 4608 double

>> caption
caption =
255 char array

'NOAA altitude data for New England, including Cape Cod.'
'Pseudocolor map uses blue for zero altitude.

The variable X is the image matrix, and map is a colormap with 192 colors. To

view it, the function imshow(X, map) can be used, which does not show indi-
ces, unlike image.

Scrubbing Image Data
Image matrices are large, so it is very important when building a data set of
images to cut down on the size wherever possible. Here is an image that uses

the RGB method.

>> streetimage = imread('street1.jpg');
>> size(streetimage)
ans =

480 640 3
>> image(streetimage)

48713.4 Sound Files

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The image shows a street with cars and trucks, and buildings on both sides of

the street.

Cropping an image is one possibility. If, for example, we are only interested in
the traffic on the street, we might crop out a lot of the image.

>> cropped = streetimage(150:250, 150:420, :);
>> image(cropped)

Now we have a much smaller image matrix, but we lose quality in the image by

doing this!

If color is not important, another possibility is to convert the color image to

grayscale, using the rgb2gray function:

>> gs = rgb2gray(cropped);
>> size(gs)
ans =

101 271

The rgb2gray function takes the three-dimensional image matrix, which stores

the Red, Green, and Blue components of each pixel, and converts it to a two-
dimensional intensity image. The numbers stored for each pixel are a weighted

combination of the numbers from the original RGB matrix. Therefore, the

number of rows and columns of the matrix are not changed, but the dimen-
sionality is reduced from three to two.

n Explore Other Interesting Features

Several audio file formats are used in industry on different computer

platforms. Audio files with the extension “.au” were developed by Sun

Microsystems; typically, they are used with Java and Unix, whereas
Windows PCs typically use “.wav” files that were developed by Microsoft.

Investigate the MATLAB functions audioread, audioinfo, and audiowrite.

Investigate the colorcube function, which returns a colormap with

regularly spaced R, G, and B colors.

Investigate the imfinfo function, which will return information about an

image file in a structure variable.

Investigatehowcolormapsworkwith imagematrices of typesuint8 anduint16.

In addition to true-color images and indexed images into a colormap, a third

type of image is an intensity image, which is used frequently for grayscale

images. Investigate how to use the image scale function imagesc.

The uibuttongroup function is used specifically to group together buttons;

other objects can be grouped together similarly using the uipanel function.
Investigate how this works.

488 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

When a GUI has a lot of objects, creating a structure to store the handles can be
useful. Investigate the guihandles function, which accomplishes this.

Investigate the uitable function. Use it to create a GUI that demonstrates a
matrix operation. n

SUMMARY

COMMON PITFALLS

n Confusing true-color and colormap images

n Forgetting that uicontrol object positions are within the Figure Window,

not within the screen

PROGRAMMING STYLE GUIDELINES

n Make a GUI invisible while it is being created, so that everything becomes
visible at once.

MATLAB Functions and Commands

colormap
parula
jet
turbo
image
pink
imread
imwrite

imshow
uipanel
uibuttongroup
uicontrol
movegui
appdesigner
uifigure
uilabel

uislider
sound
audioplayer
play
audiorecorder
recordblocking
getaudiodata

MAT-Files

chirp
gong

laughter
splat

train
handel

Exercises

1. Create a custom colormap for a sphere that consists of the first 150 colors in

the colormap turbo. Display sphere(150) with a colorbar.

2. Write a function numimage that will receive two input arguments: a colormap

matrix, and an integer n; the function will create an image that shows n “rings”

489Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

of color, using the first n colors from the colormap. For example, if the function

is called as follows:

>> cm = [0 0 0; 1 0 0; 0 1 0; 0 0 1; ...
1 1 0; 1 0 1; 0 1 1];
>> numimage(cm,5)

the image as seen in Fig. 13.31 will be created.

Each “ring” has the thickness of one pixel. In this case, because n was 5, the

image shows the first five colors from the colormap: the outermost ring is the

first color, the next ring is the second color, and the innermost pixel is the fifth

color. Note that, because n was 5, the image matrix is 9*9.
3. Write a script that would produce the 12� 12 image seen in Fig. 13.32 using the

RGB, or true-color method (NOT the colormap method), and using the type

uint8 for the pixels in the image. Note that the axes are the defaults. Do not use

any loops; vectorize your code.

4. A script rancolors displays random colors in the Figure Window as shown in

Fig. 13.33. It starts with a variable nColors which is the number of random

colors to display (e.g., below this is 10). It then creates a colormap variable

mycolormap, which has that many random colors, meaning that all three of the

color components (red, green, and blue) are random real numbers in the range

from 0 to 1. The script then displays these colors in an image in the

Figure Window.

FIGURE 13.31

Color rings.

490 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

5. It is sometimes difficult for the human eye to perceive the brightness of an

object correctly. For example, in Fig. 13.34, the middle of both images is the

same color, and yet, because of the surrounding colors, the one on the left

looks lighter than the one on the right.

2 4 6 8 10 12

2

4

6

8

10

12

FIGURE 13.32

Red, green, blue stripes.

1 2 3 4 5 6 7 8 9 10

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

FIGURE 13.33

Rainbow of random colors.

1 2 3

0.5

1

1.5

2

2.5

3

3.5
1 2 3

0.5

1

1.5

2

2.5

3

3.5

FIGURE 13.34

Depiction of brightness perception.

491Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Write a script to generate a Figure Window similar to this one. Two 3 � 3

matrices were created. Use subplot to display both images side by side (the

axes shown here are the defaults). Use the RGB method.

6. Put a JPEG file in your Current Folder and use imread to load it into a matrix.

Calculate and print the mean separately of the red, green, and blue

components in the matrix.

7. Some image acquisition systems are not very accurate, and the result is noisy

images. To see this effect, put a JPEG file in your Current Folder and use

imread to load it. Then, create a new image matrix by randomly adding or

subtracting a value n to every element in this matrix. Experiment with different

values of n. Create a script that will use subplot to display both images side

by side.

8. Put a JPEG file into your Current Folder. Type in the following script, using your

own JPEG file name.

I1 = imread('xxx.jpg');
[r c h] = size(I1);
Inew(:,:,:) = I1(:,c:-1:1,:);
figure(1)
subplot(2,1,1)
image(I1);
subplot(2,1,2)
image(Inew);

Determine what the script does. Put comments into the script to explain it

step-by-step.

9. Put a JPEG file into your Current Folder. Write a script that will read from this

image file into a matrix, and create a new yellowed version of the image which

consists of only the red and green parts of the original image. The script

displays the images side-by-side in one Figure Window.

10. Load the built-in image stored in the file earth.mat. Whichmethod is used, RGB

or a colormap?

11. Load the built-in image stored inmandrill.mat. Howmany colors are used in its

colormap?

12. Write a function that will create a GUI with one editable text box near themiddle

of the Figure Window. Put your name in the string. The GUI should have a call-

back function that prints the user’s string twice, one under the other.

13. Write a function that creates a GUI to calculate the area of a rectangle. It should

have edit text boxes for the length and width, and a push button that causes the

area to be calculated and printed in a static text box.

14. Write a function that creates a simple calculator with a GUI. The GUI should

have two editable text boxes in which the user enters numbers. There should be

four pushbuttons to show the four operations (+,�, *, /). When one of the four

pushbuttons is pressed, the type of operation should be shown in a static text

box between the two editable text boxes and the result of the operation should

492 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

be displayed in a static text box. If the user tries to divide by zero, display an

error message in a static text box.

15. Modify any example GUI to use the ‘HorizontalAlignment’ property to left-justify

text within an edit text box.

16. The Wind Chill Factor (WCF) measures how cold it feels with a given air

temperature T (in degrees Fahrenheit) and wind speed (V, in miles per hour).

The formula is approximately

WCF¼ 35:7 + 0:6T�35:7 V0:16
� �

+ 0:43T V0:16
� �

Write a GUI function that will display sliders for the temperature and wind

speed. The GUI will calculate the WCF for the given values, and display the

result in a text box. Choose appropriate minimum and maximum values for the

two sliders.

17. Write a GUI function that will graphically demonstrate the difference between a

for loop and awhile loop. The function will have two push buttons: one that says

‘for’, and the other says ‘while’. There are two separate callback functions, one

associated with each of the pushbuttons. The callback function associated with

the ‘for’ button prints the integers 1 through 5, using pause(1) to pause for

1 second between each, and then prints ‘Done.’ The callback function

associated with the ‘while’ button prints integers beginning with 1 and also

pauses between each. This function, however, also has another pushbutton

that says ‘mystery’ on it. This function continues printing integers until the

‘mystery’ button is pushed, and then it prints ‘Finally!’.

18. Write a function that will create a GUI in which there is a plot of cos(x). There

should be two editable text boxes in which the user can enter the range for x.

19. Write a GUI function that will create a rectangle object. The GUI should have two

sliders to control the two numbers used in the Curvature of a rectangle (first

the horizontal and then the vertical), and every time a slider is moved, it

displays that rectangle (with all of the others still there).

20. Write a GUI that displays an image in which all of the elements are the same

color. Put three sliders in that allow the user to specify the amount of red,

green, and blue in the image. Use the RGB method.

21. Put two different JPEG files into your Current Folder. Read both into matrix

variables. To superimpose the images, if the matrices are the same size, the

elements can simply be added element-by-element. However, if they are not

the same size, onemethod of handling this is to crop the larger matrix to be the

same size as the smaller, and then add them. Write a script to do this.

22. Create an app that has a knob and a lamp. When the knob value goes past 50,

the lamp color should change to red.

23. Create an app that has all three varieties of switches in it, and a label. The label

should display the type of the switch that was most recently changed.

493Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

24. Use App Designer to create a text editor. Create an app that has a large text box.

Under it there will be a slider that controls the font size of the text, and buttons

to make the text bold and/or italic. Start by dragging a text box into the design

area. Click on the box, and then in Design View look at the Edit Field (Text)

Properties browser. By changing properties such as the style, Name, and Size,

and then inspecting the code in Code View, you can see what to change in the

callback functions.

25. Create a stoplight app. There are two pushbuttons labeled ‘Stop’ and ‘Go’, and

three lamps. When the ‘Go’ button is pushed, the green lamp is lit. When the

‘Stop’ button is pushed, the yellow lamp is lit briefly, and then the red lamp is lit.

26. Load two of the built-in MAT-file sound files (e.g., gong and chirp). Store the

sound vectors in two separate variables. Determine how to concatenate these

so that the sound function will play one immediately followed by the other; fill in

the blank here:

sound(, 8192)

27. The following function playsound below plays one of the built-in sounds. The

function has a cell array that stores the names. When the function is called, an

integer is passed, which is an index into this cell array indicating the sound to

be played. The default is ‘train’, so if the user passes an invalid index, the

default is used. The appropriate MAT-file is loaded. If the user passes a second

argument, it is the frequency at which the sound should be played (otherwise,

the default frequency is used). The function prints what sound is about to be

played and at which frequency, and then actually plays this sound. You are to fill

in the rest of the following function. Here are examples of calling it (you cannot

hear it here, but the sound will be played!)

>> playsound(-4)
You are about to hear train at frequency 8192.0
>> playsound(2)
You are about to hear gong at frequency 8192.0
>> playsound(3,8000)
You are about to hear laughter at frequency 8000.0
playsound.m
function playsound(caind, varargin)
% This function plays a sound from a cell array
% of mat-file names
% Format playsound(index into cell array) or
% playsound(index into cell array, frequency)
% Does not return any values

soundarray = {'chirp','gong','laughter','splat','train'};
if caind < 1 jj caind > length(soundarray)

caind = length(soundarray);
end
mysound = soundarray{caind};
eval(['load ' mysound])

% Fill in the rest

494 CHAPTER 13: Sights and Sounds

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

28. Create a bar chart using the following:

>> mat ¼ randi(33, 2,3);
>> bm ¼ bar(mat);

Try to duplicate the three colors. Check your answers by examining the

properties bm(1).FaceColor, bm(2).FaceColor, and bm(3).FaceColor.

29. Create an audioplayer object using the built-in laughter MAT-file. Investigate

some of the properties of the object.

30. If you have a built-in microphone, record your voice for 5 seconds and plot the

resulting amplitude vector.

31. Load the sound file ‘mtlb.mat’, which stores the sound vector y and frequency

Fs of a person saying the word “MATLAB”. Plot this, and from the plot estimate

the part that says “MAT” and the part that says “LAB”. In a script, create two

separate vectors for these. Using the sound function in a for loop, repeat the

“MAT” sound four times, pausing for half a second after each one. Then, do the

“LAB” sound once.

Data Science and Machine Learning

32. Load the built-in image file flujet.mat. Make the map variable the current

colormap, and show the image matrix X using the image function so that you

can see the indices. There is a lot of dark blue background! Crop out asmuch of

that as you can, creating a new imagematrix xnew. Usewhos to see the number

of bytes of storage used by the original matrix and your cropped image matrix.

33. Read in the built-in image ‘peppers.png’ using imread. Use rgb2gray to convert

the image to gray scale and display the new image.

495Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This page intentionally left blank

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

CHAPTER 14

Advanced Mathematics

KEY TERMS

symbolic mathematics

set operations

complex number

real part

imaginary part

purely imaginary

complex conjugate

magnitude

complex plane

linear algebraic equation

matrix inverse

matrix augmentation

coefficients

unknowns

determinant

Gauss-Jordan method

reduced row echelon form

integration

differentiation

In this chapter, selected advanced mathematical concepts and related built-in

functions in the MATLAB® software are introduced. This chapter begins with

coverage of set operations that can be performed on data sets.

Other topics include complex numbers and a brief introduction to differenti-

ation and integration in calculus. Symbolic mathematics means doing mathe-
matics on symbols. Some of the symbolic math functions, all of which are

in Symbolic Math Toolbox™ in MATLAB, are also introduced. (Note that this

is a Toolbox and, as a result, may not be available universally.)

Solutions to sets of linear algebraic equations are important in many applica-

tions. To solve systems of equations using MATLAB, there are basically two
methods, both of which are covered in this chapter: using a matrix representa-

tion and using the solve function (which is part of Symbolic Math Toolbox™).

Note: Two sections that were in this Chapter are now covered in the Machine
Learning Supplements at the ends of chapters: Statistics in Chapters 2 and 10,

and Curve Fitting in Chapter 12 and this chapter.

14.1 SET OPERATIONS

MATLAB has several built-in functions that perform set operations on vectors.

These include union, intersect, unique, setdiff, and setxor. All of these

CONTENTS

14.1 Set
Operations 497

14.2 Complex
Numbers ..501

14.3 Matrix
Solutions to
Systems of
Linear
Algebraic
Equations .508

14.4 Symbolic
Mathematics
......................515

14.5 Calculus:
Integration and
Differentiation
..................... 521

Summary 528

Common Pitfalls
......................528

Programming Style
Guidelines528

MATLAB. https://doi.org/10.1016/B978-0-323-91750-6.00014-7

497

Copyright © 2023 Elsevier Inc. All rights reserved.

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

functions can be useful when working with data sets. By default, all returned

vectors are sorted from lowest to highest (ascending order). These set functions
also provide the option of having the results in sorted order or in the original

order. Additionally, there are two “is” functions that work on sets: ismember

and issorted.

For example, given the following vectors:

>> v1=6:-1:2
6 5 4 3 2

>> v2=1:2:7
v2=

1 3 5 7

The union function returns a vector that contains all of the values from the two

input argument vectors, without repeating any.

>> union(v1,v2)
ans=

1 2 3 4 5 6 7

By default, the result is in sorted order, so passing the arguments in the reverse
order would not affect the result. This is the same as calling the function as:

>> union(v1,v2, 'sorted')

If, instead, the character vector ‘stable’ is passed to the function, the result

would be in the original order; this means that the order of the arguments

would affect the result.

>> union(v1,v2,'stable')
ans=

6 5 4 3 2 1 7
>> union(v2,v1,'stable')
ans=

1 3 5 7 6 4 2

The intersect function instead returns all of the values that can be found in both

of the two input argument vectors.

>> intersect(v1,v2)
ans=

3 5

The setdiff function receives two vectors as input arguments and returns a vec-
tor consisting of all of the values that are contained in the first vector argument

but not the second. Therefore, the result that is returned (not just the order) will
depend on the order of the two input arguments.

>> setdiff(v1,v2)
ans=

2 4 6
>> setdiff(v2,v1)
ans=

1 7

498 CHAPTER 14: Advanced Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The function setxor receives two vectors as input arguments and returns a vec-

tor consisting of all of the values from the two vectors that are not in the inter-
section of these two vectors. In other words, it is the union of the two vectors

obtained using setdiff when passing the vectors in different orders, as seen

before.

>> setxor(v1,v2)
ans=

1 2 4 6 7
>> union(setdiff(v1,v2), setdiff(v2,v1))
ans=

1 2 4 6 7

The set function unique returns all of the unique values from a set

argument:

>> v3=[1:5 3:6]
v3=

1 2 3 4 5 3 4 5 6
>> unique(v3)
ans=

1 2 3 4 5 6

All of these functions—union, intersect, unique, setdiff, and setxor—can be

called with ‘stable’ to have the result returned in the order given by the original
vector(s).

Many of the set functions return vectors that can be used to index into the orig-

inal vectors as optional output arguments. For example, the two vectors v1 and

v2 were defined previously as:

>> v1
v1=

6 5 4 3 2
>> v2
v2=

1 3 5 7

The intersect function returns, in addition to the vector containing the values in

the intersection of v1 and v2, an index vector into v1, and an index vector into v2

such that outvec is the same as v1(index1) and also v2(index2).

>> [outvec, index1, index2]=intersect(v1,v2)
outvec=

3 5
index1=

4
2

index2=
2
3

49914.1 Set Operations

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Using these vectors to index into v1 and v2will return the values from the inter-

section. For example, this expression returns the second and fourth elements of
v1 (it puts them in ascending order):

>> v1(index1)
ans =

3 5

This returns the second and third elements of v2:

>> v2(index2)
ans =

3 5

The function ismember receives two vectors as input arguments and returns a

logical vector that is the same length as the first argument, containing logical 1

for true if the element in the first vector is also in the second, or logical 0 for
false if not. The order of the arguments matters for this function.

>> v1
v1=

6 5 4 3 2
>> v2
v2=

1 3 5 7
>> ismember(v1,v2)
ans=

0 1 0 1 0
>> ismember(v2,v1)
ans=

0 1 1 0

Using the result from the ismember function as an index into the first vector
argument will return the same values as the intersect function (although not

necessarily sorted).

>> logv=ismember(v1,v2)
logv=

0 1 0 1 0
>> v1(logv)
ans=

5 3

>> logv=ismember(v2,v1)
logv=

0 1 1 0
>> v2(logv)
ans=

3 5

The issorted function will return logical 1 for true if the argument is sorted in

ascending order, or logical 0 for false if not.

>> v3=[1:5 3:6]
v3=

1 2 3 4 5 3 4 5 6

500 CHAPTER 14: Advanced Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> issorted(v3)
ans=

0

>> issorted(v2)
ans=

1

PRACTICE 14.1

Create two vector variables vec1 and vec2 that contain five random integers, each in the range from

1 to 20. Do each of the following operations by hand first and then check in MATLAB (if you have

one of the latest versions, do this with both ‘stable’ and ‘sorted’):

n union
n intersection
n setdiff
n setxor
n unique (for each)

14.2 COMPLEX NUMBERS

A complex number is generally written in the form

z=a+bi

where a is called the real part of the number z, b is the imaginary part of z, and i
is

ffiffiffiffiffiffiffi�1
p

.

A complex number is purely imaginary if it is of the form z¼bi (in other words if

a is 0).

We have seen that in MATLAB both i and j are built-in functions that returnffiffiffiffiffiffiffi�1
p

(therefore, they can be thought of as built-in constants). Complex num-
bers can be created using i or j, such as “5+2i” or “3 – 4j”. The multiplication

operator is not required between the value of the imaginary part and the

constant i or j.

QUICK QUESTION!

Is the value of the expression “3i” the same as “3*i”?

Answer: It depends onwhether i has been used as a variable

name or not. If i has been used as a variable (e.g., an iterator

variable in a for loop), then the expression “3*i” will use the

defined value for the variable and the result will not be a

complex number. The expression “3i” will always be complex.

Therefore, it is a good idea when working with complex num-

bers to use 1i or 1j rather than just i or j. The expressions 1i and

1j always result in a complex number, regardless of whether i

and jhave beenused as variables. Therefore, use “3*1i” or “3i”.

Note

that this is the way math-

ematicians usually write a

complex number; in engi-

neering it is often written

as a+bj, where j is
ffiffiffiffiffiffiffi�1

p
.

50114.2 Complex Numbers

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> i=5;

>> i
i=

5
>> 1i
ans=

0+1.0000i

MATLAB also has a function complex that will return a complex
number. It receives two numbers, the real and imaginary parts in that order,

or just one number, which is the real part (in which case the imaginary part

would be 0). Here are some examples of creating complex numbers inMATLAB:

>> z1=4+2i
z1=

4.0000+2.0000i

>> z2=sqrt(-5)
z2=

0+2.2361i

>> z3=complex(3,-3)
z3=

3.0000–3.0000i

>> z4=2+3j
z4=

2.0000+3.0000i

>> z5=(-4) ^ (1/2)
ans=

0.0000+2.0000i

>> myz=input('Enter a complex number: ')
Enter a complex number: 3+4i
myz=

3.0000+4.0000i

Note thatevenwhen j isused inanexpression, i isused in theresult.MATLABshows

the type of the variables created here in the Workspace Window as double (com-

plex), or by usingwhos as doublewith the attribute complex. MATLAB has func-
tions real and imag that return the real and imaginary parts of complex numbers.

>> real(z1)
ans=

4

>> imag(z3)
ans=

–3

To print an imaginary number, the disp function will display both parts
automatically:

>> disp(z1)
4.0000+2.0000i

502 CHAPTER 14: Advanced Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The fprintf function will print only the real part unless both parts are printed

separately:

>> fprintf('%f\n', z1)
4.000000

>> fprintf('%f+%fi\n', real(z1), imag(z1))
4.000000+2.000000i

The function isreal returns logical 1 for true if there is no imaginary part of the

argument or logical 0 for false if the argument does have an imaginary part

(even if it is 0). For example,

>> isreal(z1)
ans=

0

>> z6=complex(3)
z5=

3

>> isreal(z6)
ans=

0

>> isreal(3.3)
ans=

1

For the preceding variable z6, even though it shows the answer as 3, it is really

stored as 3+0i, and that is how it is displayed in theWorkspaceWindow. There-

fore, isreal returns logical false as it is stored as a complex number.

14.2.1 Equality for Complex Numbers

Two complex numbers are equal to each other if both their real parts
and imaginary parts are equal. In MATLAB, the equality operator can be used.

>> z1 == z2
ans=

0

>> complex(0,4) == sqrt(-16)
ans=

1

14.2.2 Adding and Subtracting Complex Numbers

For two complex numbers z1¼a+bi and z2¼c+di,

z1 + z2 = (a + c) + (b + d)i

z1 – z2 = (a – c) + (b – d)i

As an example, we will write a function in MATLAB to add two complex

numbers together and return the resulting complex number.

50314.2 Complex Numbers

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

14.2.3 Multiplying Complex Numbers

For two complex numbers z1¼a+bi and z2¼c+di,

z1*z2=(a+bi)*(c+di)
=a*c+a*di+c*bi+bi*di
=a*c+a*di+c*bi – b*d
=(a*c – b*d)+(a*d+c*b)i

For example, for the complex numbers

z1=3+4i
z2=1–2i

the result of the multiplication would be defined mathematically as

z1*z2=(3*1––8)+(3*-2+4*1)i=11–2i

THE TRADITIONAL METHOD

In most cases, to add two complex numbers together, you would have to separate the real

and imaginary parts and add them to return your result.

addcomp.m

function outc=addcomp(z1, z2)

% addcomp adds two complex numbers z1 and z2 &
% returns the result
% Adds the real and imaginary parts separately
% Format: addcomp(z1,z2)

realpart=real(z1)+real(z2);

imagpart=imag(z1)+imag(z2);

outc=realpart+imagpart*1i;

end

>> addcomp(3+4i, 2-3i)
ans=

5.0000+1.0000i

THE EFFICIENT METHOD

MATLAB does this automatically to add two complex numbers together (or subtract).

>> z1=3+4i;
>> z2=2–3i;
>> z1+z2
ans=

5.0000+1.0000i

504 CHAPTER 14: Advanced Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This is, of course, automatic in MATLAB:

>> z1*z2
ans=

11.0000–2.0000i

14.2.4 Complex Conjugate and Absolute Value

The complex conjugate of a complex number z¼a+bi is z¼a – bi. The magni-

tude or absolute value of a complex number z is zj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2

p
. In MATLAB,

there is a built-in function conj for the complex conjugate, and the abs function

returns the absolute value.

>> z1=3+4i
z1=

3.0000+4.0000i

>> conj(z1)
ans=

3.0000–4.0000i

>> abs(z1)
ans=

5

14.2.5 Complex Equations Represented as Polynomials

MATLAB represents a polynomial as a row vector of coefficients; this can be
used when the expressions or equations involve complex numbers, also. For

example, the polynomial z2 + z – 3+2i would be represented by the vector
[1 1 –3+2i]. The roots function in MATLAB can be used to find the roots of

an equation represented by a polynomial. For example, to solve the equation
z2 + z – 3+2i¼0:

>> roots([1 1–3+2i])
ans=

–2.3796+0.5320i
1.3796–0.5320i

The polyval function can be used with this polynomial, for example

>> cp=[1 1–3+2i]
cp=

1.0000 1.0000 -3.0000+2.0000i

>> polyval(cp,3)
ans=

9.0000+2.0000i

50514.2 Complex Numbers

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

14.2.6 Polar Form

Any complex number z¼a+bi can be thought of as a point (a,b) or vector in a
complex plane in which the horizontal axis is the real part of z, and the vertical

axis is the imaginary part of z. Therefore, a and b are the Cartesian or rectangular

coordinates. As a vector can be represented by either its rectangular or polar
coordinates, a complex number can also be given by its polar coordinates r

and θ, where r is the magnitude of the vector and θ is an angle.

To convert from the polar coordinates to the rectangular coordinates:

a=r cos θ
b=r sin θ

To convert from the rectangular to polar coordinates:

r¼ zj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2

p

θ¼ arctan
b

a

� �

Therefore, a complex number z¼a+bi can be written as r cos θ+(r sin θ)i or

z=r cos θ+(i sin θ)

As eiθ¼cos θ+i sin θ, a complex number can also be written as z¼ reiθ. In
MATLAB, r can be found using the abs function, while there is a built-in func-

tion called angle to find θ.

>> z1=3+4i;
r=abs(z1)
r=

5
>> theta=angle(z1)
theta=

0.9273
>> r*exp(i*theta)
ans=

3.0000+4.0000i

14.2.7 Plotting

Several methods are used commonly for plotting complex data:

n plot the real parts versus the imaginary parts using plot
n plot only the real parts using plot

n plot the real and the imaginary parts in one figure with a legend, using

plot
n plot the magnitude and angle using polarplot (or, prior to R2016a,

polar)

Note

that the function is atan in

MATLAB.

506 CHAPTER 14: Advanced Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Using the plot function with a single complex number or a vector of complex

numbers will result in plotting the real parts versus the imaginary parts, for

example plot(z) is the same as plot(real(z), imag(z)). Thus, for the complex
number z1=3+4i, this will plot the point (3,4) (using a large asterisk so we can

see it!), as shown in Fig. 14.1.

>> z1=3+4i;
>> plot(z1,'*', 'MarkerSize', 12)
>> xlabel('Real part')
>> ylabel('Imaginary part')
>> title('Complex number')

PRACTICE 14.2

Create the following complex variables

c1=complex(0,2);
c2=3+2i;
c3=sqrt(-4);

Then, carry out the following:

n Get the real and imaginary parts of c2.
n Print the value of c1 using disp.
n Print the value of c2 in the form ‘a+bi’.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Real part

Im
ag

in
ar

y
pa

rt

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
Complex number

FIGURE 14.1

Plot of complex number.

50714.2 Complex Numbers

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n Determine whether any of the variables are equal to each other.
n Subtract c2 from c1.
n Multiply c2 by c3.
n Get the complex conjugate and magnitude of c2.
n Put c1 in polar form.
n Plot the real part versus the imaginary part for c2.

14.3 MATRIX SOLUTIONS TO SYSTEMS OF LINEAR
ALGEBRAIC EQUATIONS

A linear algebraic equation is an equation of the form

a1x1 + a2x2 + a3x3 +…: + anxn ¼b

Solutions to sets of equations in this form are important in many applica-
tions. In MATLAB, to solve systems of equations, there are basically two

methods:

n using a matrix representation

n using the solve function (which is part of Symbolic Math Toolbox™)

In this section, we will first investigate some relevantmatrix properties and then

use these to solve linear algebraic equations. The use of symbolic mathematics

including the solve function will be covered in the next section.

14.3.1 Matrix Operations

There are several common operations onmatrices, some of which we have seen

already. These include matrix transpose, matrix augmentation, and matrix

inverse.

A matrix transpose interchanges the rows and columns of a matrix. For a matrix

A, its transpose is written AT in mathematics. For example, if

A¼ 1 2 3
4 5 6

� �

then

AT ¼
1 4
2 5
3 6

2
4

3
5:

In MATLAB, as we have seen, there is a built-in transpose operator, the

apostrophe.

508 CHAPTER 14: Advanced Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

If the result of multiplying a matrix A by another matrix is the identity matrix I,

then the second matrix is the inverse of matrix A. The inverse of a matrix A is
written as A-1, so

AA�1 ¼ I

How to actually compute the inverse A-1 of a matrix by hand is not so easy.

MATLAB, however, has a function inv to compute a matrix inverse. For exam-

ple, here a matrix is created, its inverse is found, and then multiplied by the
original matrix to verify that the product is in fact the identity matrix:

>> a=[1 2; 2 2]
a=

1 2
2 2

>> ainv=inv(a)
ainv=

–1.0000 1.0000
1.0000 –0.5000

>> a*ainv
ans=

1 0
0 1

Matrix augmentation means adding column(s) to the original matrix. In

MATLAB, matrix augmentation can be accomplished using square brackets

to concatenate the two matrices. The square matrix A is concatenated with
an identity matrix which has the same size as the matrix A:

>> A=[1 3 7; 2 5 4; 9 8 6]
A=

1 3 7
2 5 4
9 8 6

>> [A eye(size(A))]
ans=

1 3 7 1 0 0
2 5 4 0 1 0
9 8 6 0 0 1

14.3.2 Linear Algebraic Equations

A linear algebraic equation is an equation of the form

a1x1 + a2x2 + a3x3 +…: + anxn ¼b

where the as are constant coefficients, the xs are the unknowns, and b is a con-

stant. A solution is a sequence of numbers that satisfy the equation. For
example,

4x1 + 5x2�2x3 ¼ 16

50914.3 Matrix Solutions to Systems of Linear Algebraic Equations

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

is such an equation in which there are three unknowns: x1, x2, and x3. One solu-

tion to this equation is x1¼3, x2¼4, and x3¼8, as 4*3+5*4 – 2*8 is equal
to 16.

A system of linear algebraic equations is a set of equations of the form:

a11x1 + a12x2 + a13x3 +…: + a1nxn ¼ b1

a21x1 + a22x2 + a23x3 +…: + a2nxn ¼ b2

a31x1 + a32x2 + a33x3 +…: + a3nxn ¼ b3

⋮ ⋮ ⋮ ⋮ ⋮
am1x1 + am2x2 + am3x3 +…: + amnxn ¼bm

This is called an m x n system of equations; there are m equations and n
unknowns.

Because of the way that matrix multiplication works, these equations can be

represented in matrix form as A x¼b, where A is a matrix of the coefficients,
x is a column vector of the unknowns, and b is a column vector of the constants

from the right side of the equations:

A x ¼ b

a11 a12 a13 ⋯ a1n
a21 a22 a23 ⋯ a2n
a31 a32 a33 ⋯ a3n
⋮ ⋮ ⋮ ⋮ ⋮
am1 am2 am3 ⋯ amn

2
66664

3
77775

x1
x2
x3
⋮
xn

2
66664

3
77775¼

b1
b2
b3
⋮
bm

2
66664

3
77775

Once the system of equations has been written in matrix form, what we want is
to solve the equation Ax=b for the unknowns x. To do this, we need to isolate x

on one side of the equation. If we were working with scalars, we would divide

both sides of the equation by A. In fact, with MATLAB we can use the divided
into operator to do this. However, most languages cannot do this with matri-

ces, so instead, wemultiply both sides of the equation by the inverse of the coef-

ficient matrix A:

A–1 A x=A–1 b

Then, because multiplying a matrix by its inverse results in the identity matrix

I, and because multiplying any matrix by I results in the original matrix, we

have:

I x=A–1 b

or

x=A–1 b

510 CHAPTER 14: Advanced Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

For example, consider the following three equations with three unknowns x1,

x2, and x3:

4x1 – 2x2 + 1x3 =7
1x1 + 1x2 + 5x3 =10

–2x1 + 3x2 – 1x3 =2

We write this in the form Ax¼b, where A is a matrix of the coefficients, x is a

column vector of the unknowns xi, and b is a column vector of the values on the
right side of the equations:

A x b

4 �2 1
1 1 5
�2 3 �1

2
4

3
5 x1

x2
x3

2
4

3
5¼

7
10
2

2
4

3
5

The solution is then x=A–1 b. In MATLAB, there are two simple ways to solve

this. The built-in function inv can be used to get the inverse of A and then

we multiply this by b, or we can use the divided into operator.

>> A=[4–2 1; 1 1 5;–2 3–1];
>> b=[7;10;2];
>> x=inv(A)*b
x=

3.0244
2.9512
0.8049

>> x=A\b
x=

3.0244
2.9512
0.8049

14.3.2.1 Solving 2 × 2 Systems of Equations
Although this may seem easy in MATLAB, in general finding solutions to sys-
tems of equations is not. However, 2� 2 systems are fairly straightforward, and

there are several methods of solution for these systems for which MATLAB has

built-in functions.

Consider the following 2 � 2 system of equations:

x1 + 2x2 =2
2x1 + 2x2 =6

This system of equations in matrix form is:

A x b

1 2
2 2

� �
x1
x2

� �
¼ 2

6

� �

51114.3 Matrix Solutions to Systems of Linear Algebraic Equations

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

We have already seen that the solution is x=A–1 b, so we can solve this if we can

find the inverse of A. One method of finding the inverse for a 2 � 2 matrix
involves calculating the determinant D.

For a 2 � 2 matrix

A¼ a11 a12
a21 a22

� �

the determinant D is defined as:

D¼ a11 a12
a21 a22

����
����¼ a11a22�a12a21

It is written using vertical lines around the coefficients of the matrix and is

defined as the product of the values on the diagonal minus the product of
the other two numbers.

For a 2 � 2 matrix, the matrix inverse is defined in terms of D as

A�1 ¼ 1

D

a22 �a12
�a21 a11

� �

The inverse is therefore the result of multiplying the scalar 1/D by every element

in the matrix shown here. Note that this is not the matrix A, but is determined
using the elements from A in the following manner: the values on the diagonal

are reversed and the negation operator is used on the other two values.

Notice that if the determinant D is 0, it will not be possible to find the inverse of
the matrix A.

For our coefficient matrix A¼ 1 2
2 2

� �
, D¼ 1 2

2 2

����
����¼1*2 – 2*2 or�2 so

A�1 ¼ 1

1∗2�2∗2
2 �2
�2 1

� �
¼ 1

�2

2 �2
�2 1

� �
¼

�1 1

1 �1

2

" #

and

x1
x2

� �
¼

�1 1

1 �1

2

" #
2
6

� �

The unknowns are found by performing this matrix multiplication.

Consequently,

x1 =–1*2+1*6=4

x2 =1*2+(–1/2)*6=–1

To do this in MATLAB, we would first create the coefficient matrix variable A

and column vector b.

512 CHAPTER 14: Advanced Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> A=[1 2; 2 2];
>> b=[2;6];

We have already seen that MATLAB has a built-in function, inv, to find a matrix
inverse. It also has a built-in function det to find a determinant:

>> det(A)
ans=

–2

>> inv(A)
ans=

–1.0000 1.0000
1.0000 –0.5000

And then, the unknowns x are found:

>> x=inv(A)*b
x=

4
–1

PRACTICE 14.3

For the following 2 � 2 system of equations:

x1 + 2x2 =4
–x1 =3

Do the following on paper:

n Write the equations in matrix form Ax¼b.
n Solve by finding the inverse A-1 and then x¼A-1 b.

Next, get into MATLAB and check your answers.

14.3.2.2 Reduced Row Echelon Form
For 2� 2 systems of equations, there are solving methods that are well-defined

and simple. However, for larger systems of equations, finding solutions is fre-

quently not as straightforward.

Several methods of solving are based on the observation that systems of equa-

tions are equivalent if they have the same solution set. Performing some simple

operations on rows of thematrix form of a set of equations results in equivalent
systems. The Gauss-Jordan method starts by augmenting the coefficient matrix

A with the column vector b and performing operations until the square part of

the matrix becomes diagonal.

Reduced Row Echelon Form takes this one step further to result in all 1s on the

diagonal, or in other words until the square part is the identity matrix. In this
case, the column of b’s is the solution. For example, for a 3�3 matrix.

51314.3 Matrix Solutions to Systems of Linear Algebraic Equations

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 b3

2
4

3
5!

1 0 0 b’1
0 1 0 b’2
0 0 1 b’3

2
4

3
5

In other words, we are reducing [A jb] to [I j b’]. Note that the prime in b’ indi-
cates that the numbers may have changed, but the systems are equivalent.

MATLAB has a built-in function to do this, called rref. For example:

>> a=[1 3 0; 2 1 3; 4 2 3];
>> b=[1 6 3]';
>> ab=[a b];
>> rref(ab)
ans=

1 0 0 -2
0 1 0 1
0 0 1 3

The solution is found from the last column, so x1¼ -2, x2¼1, and x3¼3. To get

this in a column vector in MATLAB:

>> x=ans(:,end)
x=

–2
1
3

14.3.2.3 Finding a Matrix Inverse by Reducing an Augmented Matrix
For a system of equations larger than a 2 x 2 system, one method of finding the

inverse of a matrix A mathematically involves augmenting the matrix with an

identity matrix of the same size, and then reducing it. The algorithm is:

n Augment the matrix with I: [A j I].
n Reduce it to the form [I j X]; X will be A-1.

For example, in MATLAB we can start with a matrix, augment it with an identity
matrix, and then use the rref function to reduce it.

>> a=[1 3 0; 2 1 3; 4 2 3];
>> rref([a eye(size(a))])
ans=

1.0000 0 0 –0.2000 –0.6000 0.6000
0 1.0000 0 0.4000 0.2000 –0.2000
0 0 1.0000 0 0.6667 –0.3333

In MATLAB, the inv function can be used to verify the result.

>> inv(a)
ans=

–0.2000 –0.6000 0.6000
0.4000 0.2000 –0.2000

0 0.6667 –0.3333

514 CHAPTER 14: Advanced Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

14.4 SYMBOLIC MATHEMATICS

Symbolic mathematics means doing mathematics on symbols (not numbers!).

For example, a+a is 2a. The symbolic math functions are in Symbolic Math
Toolbox™ in MATLAB. Toolboxes contain related functions and are add-ons

to MATLAB. (Therefore, this may or may not be part of your own system.) Sym-

bolic Math Toolbox™ includes an alternative method for solving equations
and is therefore covered in this chapter.

14.4.1 Symbolic Variables and Expressions

MATLAB has a type called sym for symbolic variables and expressions; these
work with character vectors. For example, to create a symbolic variable a and

perform the addition just described, a symbolic variable would first be created

by passing the character vector ‘a’ to the sym function:

>> a=sym('a');
>> a+a
ans=
2*a

Symbolic variables can also store expressions. For example, the variables b and c
store symbolic expressions:

>> b=a^2
b=
a^2
>> c=a^4;
>> class(b)
ans=

'sym'

All basic mathematical operations can be performed on symbolic variables and

expressions (e.g., add, subtract, multiply, divide, raise to a power, etc.). The fol-

lowing are examples:

>> c/b
ans=
a^2
>> b^3
ans=
a^6
>> c*b
ans=
a^6
>> b+4*a^2
ans=
5*a^2

It can be seen from the last example that MATLAB will collect like terms in these

expressions, adding the a2 and 4a2 to result in 5a2.

51514.4 Symbolic Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

If usingmultiple variables as symbolic variable names is desired, the syms func-

tion is a shortcut instead of using sym repeatedly. For example,

>> syms x y z

is equivalent to

>> x=sym('x');
>> y=sym('y');
>> z=sym('z');

The built-in functions sym2poly and poly2sym convert from symbolic expres-
sions to polynomial vectors and vice versa. For example:

>> myp=[1 2–4 3];
>> poly2sym(myp)
ans=
x^3+2*x^2-4*x+3
>> mypoly=[2 0–1 0 5];
>> poly2sym(mypoly)
ans=
2*x^4–x^2+5

>> sym2poly(ans)
ans=

2 0 –1 0 5

14.4.2 Simplification Functions

There are several functions that work with symbolic expressions and simplify

the terms. Not all expressions can be simplified, but the simplify function does

whatever it can to simplify expressions, including gathering like terms. For
example:

>> x=sym('x');
>> myexpr=cos(x)^2+sin(x)^2
myexpr=
cos(x)^2+sin(x)^2

>> simplify(myexpr)
ans=
1

The functions collect, expand, and factor work with polynomial expressions.

The collect function collects coefficients, such as the following:

>> x=sym('x');
>> collect(x^2+4*x^3+3*x^2)
ans=
4*x^3+4*x^2

The expand function will multiply out terms, and factor will do the

reverse:

516 CHAPTER 14: Advanced Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> ea=expand((x+2)*(x-1))
ea=
x^2+x–2
>> f=factor(ea)
f=
[x+2, x–1]
>> expand(f(1)*f(2))
ans=
x^2+x – 2

If the argument is not factorable, the original input argument will be returned

unmodified.

The subs function will substitute a value for a symbolic variable in an expres-
sion. For example,

>> myexp=x^3+3*x^2–2
myexp=
x^3+3*x^2–2
>> subs(myexp,3)
ans=
52

If there are multiple variables in the expression, one will be chosen by default

for the substitution (in this case, x), or the variable for which the substitution is

to be made can be specified:

>> syms a b x
>> varexp=a*x^2+b*x;
>> subs(varexp,3)
ans=
9*a+3*b
>> subs(varexp,'a',3)
ans=
3*x^2+b*x

With symbolic math, MATLAB works by default with rational numbers, mean-

ing that results are kept in fractional forms. For example, performing the addi-
tion 1/3+1/2 would normally result in a double value:

>> 1/3+1/2
ans=

0.8333

However, by making the expression symbolic, the result is symbolic also. Any

numeric function (e.g., double) could change that:

>> sym(1/3+1/2)
ans=
5/6
>> double(ans)
ans=

0.8333

51714.4 Symbolic Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The numden function will return separately the numerator and denominator

of a symbolic expression:

>> frac=sym(1/3+1/2)
frac=
5/6
>> [n, d]=numden(frac)
n=
5
d=
6

14.4.3 Displaying Expressions

The pretty function will display symbolic expressions using exponents. For

example:

>> syms x b
>> b=x^2
b=
x^2
>> pretty(b)
2

x

The function fplot will draw a two-dimensional plot in the default x-range

from�5 to 5. The following code produces the figure that is shown in

Fig. 14.2. The DisplayName property of the plot is used for the title of the plot.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-50

0

50

100

150

3 x2 + x3 - 2

FIGURE 14.2

Plot produced using fplot.

518 CHAPTER 14: Advanced Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> expr=x^3+3*x^2–2;
>> fpe=fplot(expr);
>> title(fpe.DisplayName)

14.4.4 Solving Equations

We have already seen several methods for solving simultaneous linear equa-

tions using a matrix representation. MATLAB can also solve sets of equations

using symbolic math.

The function solve solves an equation and returns the solution(s) as symbolic
expressions. The solution can be converted to numbers using any numeric func-

tion, such as double:

>> syms a b x
>> solve(2*x^2+x== 6)
ans=

–2
3/2

>> double(ans)
ans=

–2.0000
1.5000

If an expression is passed to the solve function rather than an equation, the

solve function will set the expression equal to 0 and solve the resulting equa-
tion. For example, the following will solve 3x2+x¼0:

>> solve(3*x^2+x)
ans=
–1/3

0

If there is more than one variable, MATLAB chooses which to solve for. In the

following example, the equation ax2+bx¼0 is solved. There are three variables.
As can be seen from the result, which is given in terms of a and b, the equation

was solved for x. MATLAB has rules built in that specify how to choose which
variable to solve for. For example, x will always be the first choice if it is in the

equation or expression.

>> solve(a*x^2+b*x)
ans=

0
–b/a

However, it is possible to specify which variable to solve for:

>> solve(a*x^2+b*x, b)
ans=
–a*x

51914.4 Symbolic Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

MATLAB can also solve sets of equations. In this example, the solutions for x, y,

and z are returned as a structure consisting of fields for x, y, and z. The individual
solutions are symbolic expressions stored in fields of the structure.

>> syms x y z
>> solve(4*x-2*y+z==7, x+y+5*z==10,–2*x+3*y-z==2)
ans=

struct with fields:

x: [11 sym]
y: [11 sym]
z: [11 sym]

To refer to the individual solutions, which are in the structure fields, the dot

operator is used.

>> x=ans.x
x=
124/41
>> y=ans.y
y=
121/41
>> z=ans.z
z=
33/41

The double function can then be used to convert the symbolic expressions to

numbers and store the results from the three unknowns in a vector.

>> double([x y z])
ans=

3.0244 2.9512 0.8049

PRACTICE 14.4

For each of the following expressions, show what the MATLAB result would be. Assume that all

expressions are typed SEQUENTIALLY.

x=sym('x');
a=x^3–2*x^2+1;
b=x^3+x^2;
res=a+b

p=sym2poly(res)

polyval(p,2)

sym(1/2+1/4)

solve(x^2–16)

520 CHAPTER 14: Advanced Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

14.5 CALCULUS: INTEGRATION AND DIFFERENTIATION

MATLAB has functions that perform common calculus operations on a math-

ematical function f(x), such as integration and differentiation.

14.5.1 Integration and the Trapezoidal Rule

The integral of a function f(x) between the limits given by x¼a and x¼b is writ-

ten as

Z b

a

f xð Þdx

and is defined as the area under the curve f(x) from a to b, as long as the func-

tion is above the x-axis. Numerical integration techniques involve

approximating this.

One simple method of approximating the area under a curve is to draw

a straight line from f(a) to f(b) and calculate the area of the resulting
trapezoid as

b�að Þ f að Þ + f bð Þ
2

In MATLAB, this could be implemented as a function.

THE TRADITIONAL METHOD
Here is a function to which the function handle and limits a and b are passed:

trapint.m

function int=trapint(fnh, a, b)
% trapint approximates area under a curve f(x)
% from a to b using a trapezoid
% Format: trapint(handle of f, a, b)
int=(b-a)*(fnh(a)+fnh(b))/2;
end

To call it, for example, for the function f(x)¼3x2 – 1, an anonymous function is defined, and

its handle is passed to the trapint function.

>> f=@ (x) 3*x .^ 2–1;
approxint=trapint(f, 2, 4)
approxint=

58

52114.5 Calculus: Integration and Differentiation

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

An improvement on this is to divide the range from a to b into n intervals, apply

the trapezoidal rule to each interval, and sum them. For example, for the pre-
ceding if there are two intervals, you would draw a straight line from f(a) to

f((a+b)/2) and then from f((a+b)/2) to f(b).

THE EFFICIENT METHOD

MATLAB has a built-in function trapz that will implement the trapezoidal rule. Vectors with

the values of x and y¼ f(x) are passed to it. For example, using the anonymous function

defined previously:

>> x=[2 4];
>> y=f(x);
>> trapz(x,y)
ans=

58

THE TRADITIONAL METHOD

The following is a modification of the previous function to which the function handle, limits,

and the number of intervals are passed:

trapintn.m

function intsum=trapintn(fnh, lowrange,highrange, n)
% trapintn approximates area under a curve f(x) from
% a to b using trapezoids with n intervals
% Format: trapintn(handle of f, a, b, n)
intsum=0;
increm=(highrange–lowrange)/n;
for a=lowrange: increm : highrange–increm

b=a+increm;
intsum=intsum+(b-a)*(fnh(a)+fnh(b))/2;

end
end

For example, this approximates the integral of the previous function f with two intervals:

>> trapintn(f,2,4,2)
ans=

55

THE EFFICIENT METHOD

To use the built-in function trapz to accomplish the same thing, the x vector is created with

the values 2, 3, and 4:

>> x=2:4;
>> y=f(x)
>> trapz(x,y)
ans=

55

522 CHAPTER 14: Advanced Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

In these examples, straight lines, which are first-order polynomials, were used.

Other methods involve higher-order polynomials. The built-in function quad
uses Simpson’s method. Three arguments are normally passed to it: the handle

of the function, and the limits a and b. For example, for the previous function:

>> quad(f,2,4)
ans=

54

MATLAB has a function polyint, which will find the integral of a polynomial.

For example, for the polynomial 3x2 + 4x – 4, which would be represented by
the vector [3 4–4], the integral is found by:

>> origp=[3 4–4];
>> intp=polyint(origp)
intp=

1 2 –4 0

which shows that the integral is the polynomial x3 + 2x2 – 4x.

14.5.2 Differentiation

The derivative of a function y¼ f(x) is written as
dy

dx
f xð Þ or f’(x) and is defined as

the rate of change of the dependent variable y with respect to x. The derivative is
the slope of the line tangent to the function at a given point.

MATLAB has a function polyder, which will find the derivative of a polynomial.
For example, for the polynomial x3 + 2x2 – 4x+3, which would be represented

by the vector [1 2–4 3], the derivative is found by:

>> origp=[1 2–4 3];
>> diffp=polyder(origp)
diffp=

3 4 -4

which shows that the derivative is the polynomial 3x2 + 4x – 4. The function

polyval can then be used to find the derivative for certain values of x, such as for
x¼1, 2, and 3:

>> polyval(diffp, 1:3)
ans=

3 16 35

The derivative can be written as the limit

f’ xð Þ¼ lim
h!0

f x + hð Þ� f xð Þ
h

and can be approximated by a difference equation.

Recall that MATLAB has a built-in function, diff, which returns the differences

between consecutive elements in a vector. For a function y=f(x) where x is a

52314.5 Calculus: Integration and Differentiation

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

vector, the values of f’(x) can be approximated as diff(y) divided by diff(x). For

example, the equation x3 + 2x2 – 4x+3 can be written as an anonymous func-
tion. It can be seen that the approximate derivative is close to the values found

using polyder and polyval.

>> f=@ (x) x .^ 3+2*x .^ 2–4*x+3;
>> x=0.5 : 3.5
x=

0.5000 1.5000 2.5000 3.5000
>> y=f(x)
y=

1.6250 4.8750 21.1250 56.3750
>> diff(y)
ans=

3.2500 16.2500 35.2500
>> diff(x)
ans=

1 1 1
>> diff(y) ./ diff(x)
ans=

3.2500 16.2500 35.2500

14.5.3 Calculus in Symbolic Math Toolbox™

There are several functions in Symbolic Math Toolbox™ to perform calculus
operations symbolically (e.g., diff to differentiate and int to integrate). To learn

about the int function, for example, from the Command Window:

>> help sym/int

For instance, to find the indefinite integral of the function f(x)¼3x2 – 1:

>> syms x
>> int(3*x^2–1)
ans=
x^3–x

To instead find the definite integral of this function from x¼2 to x¼4:

>> int(3*x^2–1, 2, 4)
ans=
54

Limits can be found using the limit function. For example, for the difference

equation described previously:

>> syms x h
>> f=@ (x) x .^ 3+2*x .^ 2–4*x+3;
>> limit((f(x+h)-f(x))/h,h,0)
ans=
3*x^2+4*x – 4

524 CHAPTER 14: Advanced Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

To differentiate, instead of the anonymous function we write it symbolically:

>> syms x f
>> f=x^3+2*x^2–4*x+3
f=
x^3+2*x^2–4*x+3

>> diff(f)
ans=
3*x^2+4*x – 4

PRACTICE 14.5

For the function 3x2 – 4x+2:

n Find the indefinite integral of the function.
n Find the definite integral of the function from x¼2 to x¼5.
n Approximate the area under the curve from x¼2 to x¼5.
n Find its derivative.
n Approximate the derivative for x¼2.

Data Science and Machine Learning Supplement
Fitting Polynomial Curves, Underfitting/Overfitting
Wehave seen in Chapter 12 how to use the functions polyfit and polyval to fit a
straight line through data points. In this section, we will see how to use the

same functions to fit polynomial curves of greater degrees to data points.

As an example, let us say the temperature was recorded every hour one after-

noon from 2:00 PM to 6:00 PM; the vectors might be:

>> x=2:6;
>> y=[65 67 72 71 63];

For example, to fit a straight line (degree 1) through the points representing

temperatures, the call to the polyfit function would be

>> polyfit(x,y,1)
ans=

0.0000 67.6000

which says that the best straight line is of the form 0x+67.6. However, we can

see that the temperatures rise and then fall, so it seems like a quadratic would be

a much better fit. The following would create the vectors and then fit a polyno-
mial of degree 2 through the data points, storing the values in a vector called

coefs.

>> x=2:6;
>> y=[65 67 72 71 63];
>> coefs=polyfit(x,y,2)
coefs=

–1.8571 14.8571 41.6000

52514.5 Calculus: Integration and Differentiation

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This says that the polyfit function has determined that the best quadratic that

fits these data points is –1.8571x2 + 14.8571x+41.6. Therefore, the variable coefs
now stores a coefficient vector that represents this polynomial.

The function polyval can then be used to evaluate the polynomial at specified

values. For example, we could evaluate at every value in the x vector.

>> curve=polyval(coefs,x)

This results in y values for each point in the x vector and stores them in a vector

called curve. We could then plot both the points and the curve on the same
figure as seen in Fig. 14.3. The curve does not look very smooth on this plot,

but that is because there are only five points in the x vector.

plot(x,y,'ro',x,curve)
xlabel('Time')
ylabel('Temperatures')
title('Temperatures one afternoon')
axis([1 7 60 75])

Using the subplot function, we can loop to show the difference between fitting

curves of degrees 1, 2, and 3 to the temperature data. (Note that the variable
morex stores 100 points so the graph will be smooth.)

1 2 3 4 5 6 7
60

65

70

75

Time

serutarep
m eT

Temperatures one afternoon

FIGURE 14.3

Quadratic fit to points.

526 CHAPTER 14: Advanced Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

morex=linspace(min(x),max(x));
for pd=1:3

coefs=polyfit(x,y,pd);
curve=polyval(coefs,morex);
subplot(1,3,pd)
plot(x,y,'ko',morex,curve,'k', LineWidth=2)
xlabel('Time')
ylabel('Temperatures')
title(sprintf('Degree %d',pd))
axis([1 7 60 75])

end

This will create the Figure Window shown in Fig. 14.4.

In ML, we use the terms underfitting to describe a fit that does not describe the

data very well, and overfitting to describe a fit that perhaps fits the data too well.
For example, the straight line above underfits the data. Using this line to inter-

polate or extrapolate would not produce very good results! If we had a 4th

degree polynomial that exactly fits all of our data points, that would be over-
fitting. If the data points are the training set, it might perfectly describe the train-

ing set, for example, but would likely not work for the test set because the fit was

too specific to the training set.

If you have Curve Fitting Toolbox™, there is a Curve Fitting App that can be

used to explore fitting various types of curves to data points.

2 4 6
Time

T
em

pe
ra

tu
re

s

T
em

pe
ra

tu
re

s

T
em

pe
ra

tu
re

s

60

65

70

75
Degree 1

2 4 6
Time

60

65

70

75
Degree 2

2 4 6
Time

60

65

70

75
Degree 3

FIGURE 14.4

Possible overfitting.

52714.5 Calculus: Integration and Differentiation

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

n Explore Other Interesting Features

Investigate the index vectors returned by the set functions.

Investigate passing matrices to the set functions, using the ‘rows’ specifier.

Investigate the fzero function, which attempts to find a zero of a function
near a specified x value.

Investigate linear algebra functions, such as rank for the rank of a matrix, or
null, which returns the null space of a matrix.

Investigate the functions that return eigenvalues and eigenvectors, such as
eig and eigs.

Investigate the norm function to find a vector or matrix norm.

Investigate the Ordinary Differential Equation (ODE) solve functions, such

as ode23 and ode45, which use the Runge-Kutta integration methods.

In the Command Window, type “odeexamples” to see some ODE example

codes.

Investigate some of the other numerical integration functions, such as inte-

gral, integral2 for double integrals, and integral3 for triple integrals.

Investigate the poly function, which finds the characteristic equation for a
matrix, and the polyeig function, which solves a polynomial eigenvalue

problem of a specified degree. n

SUMMARY

COMMON PITFALLS

n Forgetting that the fprintf function by default prints only the real part of a

complex number
n Forgetting that to augment one matrix with another, the number of rows

must be the same in each

PROGRAMMING STYLE GUIDELINES

n Whenworking with symbolic expressions, it is generally easier tomake all

variables symbolic variables to begin with.

528 CHAPTER 14: Advanced Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

MATLAB Functions and Commands

union
intersect
unique
setdiff
setxor
ismember
issorted
complex
real

imag
isreal
conj
angle
polarplot
inv
det
rref
sym

syms
sym2poly
poly2sym
simplify
collect
expand
factor
subs
numden

pretty
ezplot
solve
trapz
quad
polyint
polyder
int
limit

Exercises

1. Create a vector that has 10 elements. Use the mink function to determine the

two smallest, and use a set function to create a new vector that does not include

those two values.

2. Investigate the use of the bounds function to find the smallest and largest

values in a vector.

3. The set functions can be used with cell arrays of character vectors. Create two

cell arrays to store course numbers taken by two students. For example,

s1={'EC 101', 'CH 100', 'MA 115'};

s2={'CH 100', 'MA 112', 'BI 101'};

Use a set function to determine which courses the students have in common.

4. Redo problem 3 using a string array.

5. A vector v is supposed to store unique random numbers. Use set functions to

determine whether or not this is true.

6. Find the roots of the equation f(x)¼0 for the following function. Also, create x

and y vectors and plot this function in the range from�3 to 3 to visualize the

solution.

f(x)=3x2 – 2x–4

7. Store the following complex numbers in variables, and print them in the form

a+bi.

3�2iffiffiffiffiffiffiffi
�3

p

8. Create the following complex variables

c1=1–3i;
c2=5+2i;

529Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Perform the following operations on them:

n add them

n multiply them

n get the complex conjugate and magnitude of each

n put them in polar form

9. Represent the expression z3�2z2+3 – 5i as a row vector of coefficients, and

store this in a variable compoly. Use the roots function to solve z3�2z2+3 –

5i¼0. Also, find the value of compoly when z¼2 using polyval.

10. Analyzing electric circuits can be accomplished by solving sets of equations.

For a particular circuit, the voltages V1, V2, and V3 are found through the

system:

V1 =5
–6V1 + 10V2–3V3 =0
–V2+51V3 =0

Put these equations in matrix form and solve in MATLAB.

11. Re-write the following system of equations in matrix form:

4x1 – x2 + 3x4 =10
–2x1 + 3x2 + x3 –5x4 =-3
x1 + x2 – x3 + 2x4 =2
3x1 + 2x2 – 4x3 =4

Set it up in MATLAB and use any method to solve.

12. Solve the simultaneous equations x – y¼2 and x2+y¼0 using solve. Plot the

corresponding functions, y¼x-2 and y¼-x2, on the same graph with an x range

from�5 to 5.

13. For the following set of equations,

2x1 + 2x2 + x3 =2
x2 + 2x3 =1
x1 + x2 + 3x3 =3

write it in symbolic form and solve using the solve function. From the symbolic

solution, create a vector of the numerical (double) equivalents.

14. The reproduction of cells in a bacterial colony is important for many

environmental engineering applications such as wastewater treatments.

The formula

log(N)=log(N0)+t/T log(2)

can be used to simulate this, where N0 is the original population, N is the

population at time t, and T is the time it takes for the population to double. Use

the solve function to determine the following: if N0¼102, N¼108, and

t¼8 hours, what will be the doubling time T? Use double to get your result in

hours.

15. Using the symbolic function int, find the indefinite integral of the function

4x2+3, and the definite integral of this function from x¼-1 to x¼3. Also,

approximate this using the trapz function.

530 CHAPTER 14: Advanced Mathematics

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

16. Use the quad function to approximate the area under the curve 4x2+3 from�1

to 3. First, create an anonymous function and pass its handle to the quad

function.

17. Use the polyder function to find the derivative of 2x3 – x2+4x – 5.

18. Examine the motion, or trajectory, of a projectile moving through the air.

Assume that it has an initial height of 0, and neglect the air resistance for

simplicity. The projectile has an initial velocity v0, an angle of departure θ0, and

is subject to the gravity constant g¼9.81m/s2. The position of the projectile is

given by x and y coordinates, where the origin is the initial position of the

projectile at time t¼0. The total horizontal distance that the projectile travels is

called its range (the point at which it hits the ground), and the highest peak (or

vertical distance) is called its apex. Equations for the trajectory can be given in

terms of the time t or in terms of x and y. The position of the projectile at any

time t is given by:

x¼ v0 cos θ0ð Þ t
y¼ v0 sin θ0ð Þ t�½g t2

For a given initial velocity v0, and angle of departure θ0, describe the motion of

the projectile by writing a script to answer the following:

n What is the range?

n Plot the position of the projectile at suitable x values

n Plot the height versus time

n How long does it take to reach its apex?

Data Science and Machine Learning

19. How well does a quadratic curve fit a sin curve in the x range from 0 to pi? Write

a script that will create an x vector that has 100 points in the range from 0 to pi,

and a y vector that is sin(x). Fit a quadratic to these points. Plot the sin curve as a

black line, and the quadratic as individual red stars. Verify the difference at

x¼1.5 using polyval on your quadratic curve and sin(1.5).

531Programming Style Guidelines

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This page intentionally left blank

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

CHAPTER 15

Basic Machine Learning Algorithms
and Concepts

KEY TERMS

Silhouette coefficients k-means clustering centroid

With Machine Learning (ML), large data sets are inputs into computer pro-

grams, which then find patterns in the data in order to aid in making predic-

tions. Machine Learning is a very complex field. Two of the basic
foundations are computer coding, and probability and statistics. This text serves

as an introduction to the necessary computer programming constructs. How-

ever, it is way beyond the scope of this book to introduce all of themathematics
necessary to understand how ML algorithms work.

This chapter is intended to serve as a basic introduction to some of the ML
concepts, algorithms, and workflows. It is meant to be a bridge between

the programming concepts covered in this book and the fields of data science

and ML. There are so many concepts and so many technical terms that some
of the background information has already been spread throughout the book.

At the end of every chapter in this text, there is a roughly two-page section on

data science and ML. Therefore, the first 30 pages of this chapter are to be
found at the ends of the other chapters! It is strongly recommended that

before continuing with this chapter, readers go back and review all of that

material. When the concepts that were covered in these sections are referenced
in this chapter, the chapter in which the concepts appeared will be given in

parentheses.

The rest of this chapter synthesizes some of the material already covered and

introduces some of the algorithms used in both supervised and unsupervised

learning. The last section briefly introduces Statistics and Machine Learning
Toolbox™.

CONTENTS

15.1 Preprocessing
Data, Basic
Workflow ..534

15.2 Algorithms
and Model
Performance
...................537

15.3 Statistics
and Machine
Learning
Toolbox™ .540

Summary 546

Common
Pitfalls546

MATLAB. https://doi.org/10.1016/B978-0-323-91750-6.00015-9

533

Copyright © 2023 Elsevier Inc. All rights reserved.

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

15.1 PREPROCESSING DATA, BASIC WORKFLOW

The workflow will be slightly different with the different types of ML algo-

rithms, but the basics will remain the same:

n Get the data set

n Iterate through these steps until accurate model is found:

n Preprocess/scrub the data
n Choose an algorithm

n Fit a model to the data

n Assess the model performance
n Use model to make predictions

n Get new data

n Preprocess/scrub the data using the same methods as for the training/
testing data

n Use the fitted model

n Make predictions

Because the same methods are used to preprocess/scrub the new data as the
original training/testing data, it is generally useful to write a function to do this

preprocessing.

Built-in Data Sets
To demonstrate some of these steps, we use some data files that are built-in to

MATLAB®. We have already seen some built-in files, including the following:

n outages.csv: stores information on some power outages. Use readtable to
read it into a table.

n census.mat: stores census data in the US every 10 years from 1790 to

1990, in two variables cdate and pop. Use load to read them in and then
put them into a matrix or table.

n cape.mat: Stores an image of Cape Cod in a variable X and a colormap in

the variable map.
n street1.jpg: image of a street; read it using imread.

Other built-in .mat files include “accidents.mat,” which stores accident data

from the 50 United States and Washington, D.C.; “patients.mat,” which stores
10 features for 100 hypothetical medical patients; and “wind.mat,” which

stores position and velocity components of air currents.

MATLAB also has some built-in labeled data sets, which are in Statistics and
Machine Learning Toolbox™. These include the following:

Fisher Iris: This labeled data set contains 50 rows for each of three different iris
species. For every flower, the Petal Length and Width, the Sepal Length and

Width, and the species were recorded. This is a very famous data set and can

534 CHAPTER 15: Basic Machine Learning Algorithms and Concepts

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

be found in many forms. In MATLAB, it is available as a .csv file (‘fisheriris.csv’)

and also as a .mat file (‘fisheriris.mat’) that stores two variables:meas, which is a
150�4matrix storing thedata, and species,which is a cell array that stores the iris

species labels. If youdonothave access to this data set throughMATLAB, you can

do a search on the web for “Fisher Iris Data Set” to find and download it.

Cars: These labeled data sets contain information on cars. There are two:

carsmall.mat (stores 100 rows) and carbig.mat (stores 406 rows). The .mat
files have 10 column vectors, “Acceleration”, “Cylinders”, “Displacement”,

“Horsepower”, “Mfg”, “Model”, “Model_Year”, “MPG”, “Origin”, and

“Weight”. The “Origin” vector stores the country of origin; this vector can be
used as labels. The “Mfg” column vector stores the names of the manufacturers,

and the “Model” column vector stores the names of the car models.

Ovarian Cancer: This labeled data set stores information on 216 patients. There
are 4000 factors, and two labels, either ‘Cancer’ or ‘Normal’. There is a .mat file

(‘ovariancancer.mat’) that stores two variables: obswhich is a matrix storing the
factor data, and grpwhich is a cell array storing the character vectors ‘Cancer’ or

‘Normal’.

Arrhythmia: This labeled data set stores information on 452 patients. There are
279 factors that are predictors, and 16 different classifications indicating vary-

ing degrees of arrhythmia in the patients. There is a .mat file (‘arrhythmia.mat’)

that stores four variables: “Description”, “VarNames”, “X”, and “Y”.
“Description” is a brief description of the data set and its origin.

“VarNames” is a cell array that stores the names of the variables. “X” is a

452� 279 matrix that stores the data. “Y” is the response variable, which stores
integers from 1 to 16 representing the degrees of arrhythmia.

There are others, many of which are used in examples in the MATLAB
documentation.

Preprocessing Data
Data sets are usually represented in MATLAB as either matrices or tables. For
labeled data, generally the predictor features are called X, and the response vec-

tor is called Y. It is common for the response vector to be the last column in

either the matrix or table. The first step in working with any ML algorithm is
to preprocess the data to get it into a format that can be used by the algorithm.

This includes both cleaning the data if it is messy (and, almost always this will

be true!), as well as feature engineering to reduce the number of features or to
create new features, and to make sure that the feature types can be used by the

chosen algorithm.

Messy data includes data that are missing or incorrect. Missing data is repre-

sented in different ways, depending on the type of the feature. For example,

missing numbers, as we have seen (Chapter 4), are frequently represented by

53515.1 Preprocessing Data, Basic Workflow

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

NaN in data sets (sometimes also by 0). Other representations of missing data

include the following:

n datetime: NaT
n character vectors: ‘ ’

n strings: <missing>

n categorical: <undefined>

The function ismissing returns 1 for true for every element that stores a missing

value, and 0 for false for all other elements. To simulate a data set with missing
values, the function missing can be used to create missing values in a data set.

Missing data can either be deleted (deleting the entire row), or it can be replaced
by a specified value. Because it is usually best to keep a data set as large as pos-

sible, replacing the missing value is preferred. Missing values are sometimes

replaced by the mean, median, or mode of the feature vector. Missing values
can also be replaced by a specified constant, or perhaps by the previous value

in the feature vector. In MATLAB, the function fillmissing can be used to

replace missing values of all types.

For example, a string array is created with one missing element, and then the
missing value(s) are modified to store a constant value:

>> strarr=["hello" "hi" missing "ciao"]
strarr=

1�4 string array
"hello" "hi" <missing> "ciao"

>> strarr=fillmissing(strarr, 'constant', "xyz")
strarr=

1�4 string array
"hello" "hi" "xyz" "ciao"

In another example, a categorical array is created, one of the elements is mod-
ified to be missing, and then the missing value(s) are modified to store the pre-

vious value in the array:

>> cat=categorical({'north', 'east', 'north', ...
'south', 'west'});

>> cat(2)=missing
cat=

1�5 categorical array
north <undefined> north south west

>> fillmissing(cat, 'previous')
ans=

1�5 categorical array
north north north south west

Of course, themissing function is just used here to simulate missing data. Nor-
mally these missing values would occur automatically when importing the

data set.

536 CHAPTER 15: Basic Machine Learning Algorithms and Concepts

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Incorrect data might be in the form of outliers, but keep in mind that not all

outliers are errors and in fact may represent vital information. However, if out-
liers are deemed to be errors, those observations should be removed. The

rmoutliers function, new in R2018b, can be used to do this.

Once the missing and incorrect values have been dealt with, the next task is to

examine the feature vectors to see whether it makes sense to leave them, delete

them, or transform them in some way. Some features may be completely irrel-
evant, and some may be redundant, so these can be deleted. This generally

involves some domain knowledge, knowing what makes sense for a particular

application.

Doing statistical analyses (Chapters 2, 3, and 10) and visualizing the data

(Chapter 5) can be very helpful at this stage. Looking at correlations

(Chapter 5), for example, can help determine whether some features are irrel-
evant or not.

If it is determined that a numerical feature vector stores information that is too
detailed, it may be wise to put the real numbers into bins, or categories

(Chapter 4). This, of course, only works if the algorithm accepts data of the type

categorical. If categorical data are not possible, one-hot encoding (Chapter 8)
can be used to transform this data into 1/0 numbers. Sometimes new features

are also created from other features, or combinations of features.

Once the feature analysis and engineering are complete, it may be necessary to

normalize the numerical feature vectors so that larger numbers do not domi-

nate in importance in the ML algorithm (Chapter 3). The normalize function,
new as of R2018a, can be used to normalize feature columns in matrices or

tables.

If the algorithm involves creating training and test sets, the data set should first
be randomized (Chapter 5).

The Live Editor has some Tasks that can be used to help preprocess the data.
These include Clean Missing Data, Clean Outlier Data, and Smooth Data. In

future releases, more Tasks will be added, and more data types will be sup-

ported for these Tasks.

15.2 ALGORITHMS AND MODEL PERFORMANCE

15.2.1 Supervised Learning

With supervised learning algorithms, the data set is labeled. A validation
method must be chosen (Chapter 5). As we have seen, for large data sets hold-

out validation can be used, which means splitting the data into training and

53715.2 Algorithms and Model Performance

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

validation (holdout) sets. Otherwise, for smaller data sets, it may be better to

use the k-folds cross-validation method.

Supervised algorithms include Classification algorithms that can be used to

predict categories (e.g., spam/not spam for email) or Regression algorithms
that can be used to predict continuous data (real numbers). For both of these

types of algorithms, the basic workflow is as follows:

n Get the data set

n Preprocess/scrub the data

n Iterate through these steps:
n Feature engineering/feature selection/principal component analysis

n Choose a validation method and split the data if necessary (first

randomizing)
n Choose an algorithm

n Fit a model to the data

n Train the model
n Assess the model performance (e.g., accuracy for classification

algorithms)

n Tune hyperparameters
n Visualize the results

n Validate the model if holdout validation used

n Test the model
n Use model to make predictions

Classification Algorithms
Some basic classification algorithms include the following:

n Nearest Neighbor

n Linear Discriminant
n Decision Trees

n Support Vector Machines

n Neural Networks

Some of these algorithms are conceptually easy to grasp. For example, Nearest

Neighbors algorithms use a distance metric (Chapter 6) to calculate how close
data points are to each other and classify based on that distance. Decision trees

(Chapter 4) create branches based on yes/no questions; an example will be

given in the next section. Other algorithms, however, are very complex math-
ematically and are virtually impossible to explain to the novice. These algo-

rithms must be used as a “black box”. A black box means that you send

input into it, you get output, but you really have no idea how the output
was obtained. Neural Networks definitely fall into this category!

538 CHAPTER 15: Basic Machine Learning Algorithms and Concepts

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Once a model has been trained using one of these algorithms, it is necessary to

assess the performance of the model. We have seen some of the assessment
mechanisms already such as accuracy (Chapter 1) and confusion matrices

(Chapter 8). Visualizing the categories using a scatter plot is also very helpful.

Regression Algorithms
Some basic algorithms include the following:

n Linear Regression

n Regression Trees
n Support Vector Machines

As with classification algorithms, some regression algorithms are easier for the

novice to understand than others. Linear regression creates a linear function of

predictor variables. Linear regression commonly uses a least squares algorithm,
as we have seen in Chapter 12.

Because regression algorithms are used to predict real numbers, assessing the

model performance is typically accomplished by measuring the differences
between the actual and predicted values. The most common validation metric

is Root Mean Squared Error (RMSE), which is the square root of the average
squared error. The smaller the RMSE is, the better the fit. Visualizing the fit

by plotting (as in Chapter 12) is also helpful.

15.2.2 Unsupervised Learning

With unsupervised learning, the data is not labeled. An algorithm, typically a

Clustering algorithm, is used to discover patterns and group data into clusters.
Some basic algorithms include the following:

n K-Means

n K-Nearest Neighbors

n Hierarchical
n Neural Networks

The K-Nearest Neighbors clustering algorithm is similar to the Nearest Neigh-
bors classification algorithm in that it uses a distance metric to determine how

closely spaced points are, and uses that to create the clusters. This particular

algorithm puts the data points into mutually exclusive clusters. With some
other algorithms, however, points can be members of more than one cluster.

One method of assessing how well the clusters have been established is by cal-
culating silhouette coefficients, whichmeasure how similar individual points are

to the other points in that particular cluster.

53915.2 Algorithms and Model Performance

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

15.3 STATISTICS AND MACHINE LEARNING TOOLBOX™

Statistics andMachine Learning Toolbox™hasmanybuilt-in functions toperform

MLtasks,anditalsohassomebuilt-inlabeleddatasetsthatcanbeusedasexamples.It
alsohasAppsbuilt inforsupervisedlearning(bothclassificationandregression)but

currentlynoAppforunsupervisedlearning(clustering).TheAppsaretoolsthatallow

youtotrain,validate,andtestdatausingavarietyofalgorithmswithoutwritingcode
yourself.TheAppscanalsobeusedtolearnhowtowrite thecodeprogrammatically.

Once amodel has been created, the code can be autogenerated and inspected.

It is easiest to prepare the data set first, and then open up the appropriate App.

Most of the functions that fit models to data follow the naming convention: fit

c/r algorithm (the word ‘fit’ followed by ‘c’ for classification or ‘r’ for regression,
followed by a word representing the algorithm). For example, fitctree uses a

decision tree for classification, and fitrtree uses a tree for regression.

There are many ML functions and options in the Apps. Most of this is beyond
the scope of this book. Rather than exhaustive explanations, one example will

be used for each type of algorithm (classification, regression, and clustering) to

illustrate the basic ideas.

15.3.1 Classification

Thereareseveral typesofclassificationalgorithms, forwhich thereare functionsand
also options within the Classification Learner App. These include the following:

n Decision Trees

n Discriminant Analysis

n Logistic Regression
n Naı̈ve Bayes

n Support Vector Machines

n Nearest Neighbors
n Ensemble

There are several variations for most of these.

The classification algorithms have requirements for the types of data that are
allowed. All of the algorithms accept data sets consisting of all numbers. Most of

the algorithms accept data sets consistingof all categorical data (except forDiscrim-

inant Analysis, and Nearest Neighbors if using Hamming distance metric only).
Most of the algorithms accept data sets consisting of some numerical features

and some categorical (except for Discriminant Analysis and Nearest Neighbors).

Classification Functions
Here is an example of fitting a decision tree to the Fisher Iris data. The function

to do this is called fitctree. The PredictorNames property gives names for the
Sepal Length, Sepal Width, Petal Length, and Petal Width. The cross-validation

method is used for training, which by default uses 10 folds.

540 CHAPTER 15: Basic Machine Learning Algorithms and Concepts

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

>> load fisheriris
>> irismodel=fitctree(meas, species, 'CrossVal', 'on', ...
'PredictorNames', {'SepL', 'SepW', 'PetL', 'PetW'})

irismodel=

ClassificationPartitionedModel
CrossValidatedModel: 'Tree'

PredictorNames: {'SepL' 'SepW' 'PetL' 'PetW'}
ResponseName: 'Y'

NumObservations: 150
KFold: 10

Partition: [1�1 cvpartition]
ClassNames: {'setosa' 'versicolor' 'virginica'}

ScoreTransform: 'none'

Properties, Methods

One of the properties of the model is called Trained. This is a 10 � 1 cell

array that stores the models used in each of the 10 folds. For example,
irismodel.Trained{1} is the model that was created using the first tenth of

the data as validation data, and the rest as the training data. The resulting deci-

sion tree can be displayed as follows, as shown in Fig. 15.1.

>> view(irismodel.Trained{1},'Mode', 'graph')

FIGURE 15.1

Decision tree.

54115.3 Statistics and Machine Learning Toolbox™

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Notice that the branches of the decision tree are all based on the Petal Length

and Petal Width. You can similarly view the other nine models (e.g., irismodel.
Trained{2}, etc.).

Classification Learner App
The Classification Learner App allows you to graphically set parameters and to

see the results from training and testing models. The first task is to split your
cleaned data into training and testing sets. Then, from theMATLABHome page,

choose APPS and thenClassification Learner. Choose “New Session” on the left,

and then where the data is (workspace or a file). From the workspace, choose
predictor and response variables on the left from your training variable(s),

and on the right choose a validation method. For the validation method, you

can choose cross validation and for that you choose the desired number of folds
(the default is 5), or you can choose holdout validation and then the percentage

of the training data set to use for validation (the default is 25%).

Then, click on “Start Session”. One or more algorithms will be chosen by

default. Under Model Type, click on the down arrow next to the chosen algo-

rithms to see all of the possible algorithms. If your data is not of the correct
type(s) for a particular algorithm, it will be grayed out and cannot be used.

The best way to get started is to click on “All Quick to Train”, and then click

on the “Train” button. This will go through all of the available algorithms,
and on the left will show the different algorithms with the results from each.

The accuracy of each algorithm is important. You can choose a particular algo-

rithm, and then you can view such diagnostics as a scatter plot and the confu-
sion matrix. Once an accurate model is chosen, the model can then be tested

using the test data. The Export button allows you to generate a function that

would duplicate the results from the App, and also to export a model to a var-
iable that can be used in the Command Window. Examining the code in the

function is a good way to learn how to create models programmatically.

15.3.2 Regression

There are several types of regression algorithms, for which there are functions and

also options within the Regression Learner App. These include the following:

n Linear Regression
n Regression Trees

n Support Vector Machines

n Gaussian
n Ensemble of Trees

n Neural Networks

There are several variations for most of these.

The regressionalgorithmshave requirements for the typesofdata that are allowed.

542 CHAPTER 15: Basic Machine Learning Algorithms and Concepts

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Regression Functions
One function for regression is fitlm,which fits a linear regressionmodel. Thepre-

dictors can be numerical, logical, categorical, character, or string. The response
can be numeric or logical. If the data set has not been cleaned, the fitlm function

will exclude observations that include <missing>, <undefined>, or NaN

values.

For example, we will load the carsmall.mat file and put some of the variables
together in a table. Because themodel year of each car is really a category, and so

that later models (with higher numbers) will not adversely impact the result,

that predictor feature is modified to be the type categorical. Passing this
table to the fitlm function creates a model. There are many properties of the

model, which can be seen with properties(mdl). By default, the Formula and

Coefficients properties and some statistical results, including the RMSE, are
displayed.

>> load carsmall
>> cartable=table(Cylinders, Horsepower, Weight, Model_Year, MPG);
>> cartable.Model_Year=categorical(cartable.Model_Year);
>> mdl=fitlm(cartable)
mdl=

Linear regression model:
MPG � 1+Cylinders+Horsepower+Weight+Model_Year

Estimated Coefficients:
Estimate SE tStat pValue
________ _________ ________ __________

(Intercept) 40.042 1.5901 25.182 1.0068e-41
Cylinders -0.18671 0.42858 -0.43565 0.66417
Horsepower -0.016474 0.017297 -0.95239 0.34354
Weight -0.005531 0.0010132 -5.4588 4.4654e-07
Model_Year_76 1.2804 0.93786 1.3653 0.17569
Model_Year_82 7.5479 0.9923 7.6064 3.0992e-11

Number of observations: 93, Error degrees of freedom: 87
Root Mean Squared Error: 2.89
R-squared: 0.879, Adjusted R-Squared: 0.872
F-statistic vs. constant model: 126, p-value=2.68e-38

The properties can also be queried separately (e.g., the Formula), which show
the linear combination of the predictors that was used:

>> mdl.Formula
ans=
MPG � 1+Cylinders+Horsepower+Weight+Model_Year

Regression Learner App
The Regression Learner App allows you to graphically set parameters and to see
the results from training and testing models. From the MATLAB Home page,

choose APPS and then Regression Learner. Choose “New Session” on the left,

and then where the training data is (workspace or a file). From the workspace,

54315.3 Statistics and Machine Learning Toolbox™

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

choose predictor and response variables on the left, and on the right choose a

validation method. Then, click on “Start Session”. One or more algorithms will
be chosen by default. Under Model Type, click on the down arrow next to the

chosen algorithms, to see all of the possible algorithms. If your data is not of the

correct type(s) for a particular algorithm, it will be grayed out and cannot be
used. The best way to get started is to click on “All Quick to Train”, and then

click on the “Train” button. This will go through all of the available algorithms,

and on the left will show the different algorithms with the results from each.
The training results, including the RMSE, are shown. The model can then be

tested using the test data. Once an accurate model has been chosen, the Export

button allows you to generate a function that would duplicate the results from
the App, and also to export a model to a variable that can be used in the Com-

mand Window.

15.3.3 Clustering

Clustering algorithms are unsupervised algorithms, used when the data is not

labeled. These algorithms attempt to put the data into clusters, or groups. As of
R2021b, there is no App, although there will be one in a future version.

Perhaps the simplest algorithm to understand is the k-means clustering algo-

rithm. This algorithm creates k clusters (where k is a positive integer). Each clus-

ter has a centroid, which is the center of the cluster. The basic idea is that the
distance between the data points and the mean of the cluster is minimized.

With this algorithm, the clusters are all mutually exclusive. The function

kmeans is used for this. This function returns several values, but one of the
basic ways to call it is:

[idx, cent]=kmeans(X, k)

where X is the data set, k is the desired number of clusters, idx is a vector storing,

for every observation, the index or the cluster number to which that observation

was assigned, and cent is the centroid locations.

To illustrate this function, we will use the Fisher Iris data set (without the

labels). We know that this data set stores 150 observations, 50 for each of

the three types of irises. Loading the .mat file:

load fisheriris

creates the matrix variable meas, which stores the predictors. We will cheat a

little here, knowing that the Petal length (column 3) and Petal width

(column 4) are good predictors, so we will create our matrix with just those
columns. We will also specify that we want three clusters:

fishX=meas(:, 3:4);
[idx, cent]=kmeans(fishX, 3);

544 CHAPTER 15: Basic Machine Learning Algorithms and Concepts

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

The gscatter function can be used to visualize the clustering of the data. The

gscatter function creates a scatter plot showing groups in different colors, as
seen in Fig. 15.2.

gscatter(fishX(:,1),fishX(:,2), idx, 'rgb')

We could also plot the centroids. We can see that the second category is well

separated from the other two, but some of the points in Categories 1 and 3

are very close to each other. In fact, the kmeans function did not do a perfect
job of finding the three classifications, but it came close. One piece of informa-

tion is the number in each of the categories found by kmeans (knowing that in

the original data set there were 50 in each category):

>> catlen=sum(idx == 1:3)
catlen=

48 50 52

Of course, just because there were 50 observations categorized as 2, that does

not mean that they were all correctly categorized, but it is an indication.

Another way of visualizing the categories and how well separated they are from
each other is with a silhouette plot, as seen in Fig. 15.3.

silhouette(fishX, idx)

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

1
2
3

FIGURE 15.2

Gscatter plot.

54515.3 Statistics and Machine Learning Toolbox™

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Silhouette valuesmeasure how “similar” individual points are to the other points

in the assigned cluster. A high value, close to 1, indicates that the points in the

cluster have been assigned well. The silhouette values in Cluster 2 are all 1 or
close to 1. The silhouette values for Clusters 1 and 3 are not as close to 1, which

means that there is more uncertainty in assigning data points to those clusters.

n Explore Other Interesting Features

Investigate how to add a least squares line to a scatter plot using the lsline
function. n

SUMMARY

COMMON PITFALLS

n Not cleaning data properly

n Not realizing that some algorithms require certain types of data

n Not splitting the data into training and testing sets

MATLAB Functions and Commands

ismissing
missing
fillmissing
rmoutliers

normalize
fitctree
fitrtree
fitlm

kmeans
gscatter
silhouette

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Silhouette Value

C
lu

st
er

1

2

3

FIGURE 15.3

Silhouette plot.

546 CHAPTER 15: Basic Machine Learning Algorithms and Concepts

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Exercises

1. Load the census.mat data file, create a table with the cdate and pop variables,

and then randomize the rows of the table.

2. Read the data from the outages.csv file into a table. Write code that will

determine, for each feature, how many values are missing.

3. Load the accidents.mat file. Convert the hwydata matrix to a table using the

array2table function. Modify the Properties.VariableNames property of your

table to use the labels from the hwyheaders variable. Add the state labels to the

beginning of the table using the addvars function.

4. Read the data from the outages.csv file into a table. Use the fillmissing function

to replace the NaN values for the Loss and Customers features with the mean of

the remaining values for that particular feature.

5. Read the data from the fisheriris.csv file into a table. Randomize the data and

create a testing data set and a holdout data set. Use the fitcknn function to fit a

K-Nearest Neighbors model to the test data. Use the predict function on the

holdout data to predict the categories. Display a confustion matrix using the

confusionmat function, passing the Species vector for the holdout set and the

result from the prediction.

6. Read the data from the fisheriris.csv file into a table. Launch the Classification

Learner App, and accept the defaults for the data and the validation method.

Choose All Quick to Train, and then Train. Find the model with the greatest

accuracy. Examine the confusion matrix for this model. Look at a scatter plot

with the Petal Length on the x-axis, and the Petal Width on the y-axis. Does

enabling PCA improve the accuracy? Click on Export to export the function that

has been auto-generated.

7. Load the carbig.mat file, and create a table using Cylinders, Horsepower,

Weight, Model_Year, and MPG. Make the Model_Year categorical. Launch the

Regression Learner app and choose your table (MPG should be the response).

Choose All Quick to Train, and then Train. Find the model with the lowest RMSE.

Click on Export Model to export the model to the Command Window.

8. Load the carbig.mat file, and create a matrix using the Horsepower and Weight

columns. Clean the missing data by removing any rows in which there are

missing values. Use the kmeans function to put the data into seven categories.

Use the gscatter function to display the clusters (make sure to specify seven

different colors). Examine the silhouette plot. Try different values for k.

547Common Pitfalls

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This page intentionally left blank

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

APPENDIX I

MATLAB® Functions (Not Including Those
Listed in the “Explore Other Interesting
Features” Sections or in the “Data Science
and Machine Learning Supplement”
Sections)

abs absolute value
addvars adds variables to a table

all true if all elements in the input argument are true

angle angle of a complex number
any true if any element in the input argument is true

append concatenates text and does note remove blanks

area filled two-dimensional area plot
array2table converts an array to a table

asin arcsine in radians

asind arcsine in degrees
asinh inverse hyperbolic sine in radians

audioplayer creates an audioplayer object

audiorecorder creates an audiorecorder object
axis sets limits on axes for a plot

bar two-dimensional bar chart

bar3 three-dimensional bar chart
bar3h three-dimensional horizontal bar chart

barh two-dimensional horizontal bar chart

blanks creates a character vector of all blank spaces
cast casts a variable to a specified type

categorical converts cell array to categorical array

categories lists categories from a categorical array
ceil rounds toward infinity

cell creates a cell array
celldisp displays contents of a cell array

cellplot displays contents of a cell array in boxes

MATLAB. https://doi.org/10.1016/B978-0-323-91750-6.09999-6

549

Copyright © 2023 Elsevier Inc. All rights reserved.

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

cellstr converts from a character matrix to a cell array of

character vectors

char creates a character matrix
checkcode displays Code Analyzer results for code files

class returns the type or class of the input argument
clear clears variable(s) and functions from the

workspace

clearvars clears variable(s) from the workspace
clf clears the figure window

clock stores the current date and time in a vector

collect collects like terms in a symbolic math expression
colorbar displays a color scale in a plot

colormap returns the current colormap, or sets a matrix to be

the current colormap
comet animated two-dimensional plot

comet3 three-dimensional animated plot

complex creates a complex number
conj complex conjugate

connector connects mobile device to MATLAB

contains returns true if a substring is found in text
count counts the number of occurrences of a substring in

text

cross cross product
csvread reads from a file filename.csv (no longer

recommended)

csvwrite writes to a file filename.csv (no longer
recommended)

cummax cumulative, or running, maximum of a vector or

columns of a matrix
cummin cumulative, or running, minimum of a vector or

columns of a matrix

cumprod cumulative, or running, product of a vector or
columns of a matrix

cumsum cumulative, or running, sum of a vector or

columns of a matrix
cylinder returns three-dimensional data vectors to create a

cylinder

date stores the current date as a character vector
dbcont continue executing code in debug mode

dbquit quit debug mode

dbstep step through code in debug mode
dbstop set a breakpoint in debug mode

550 APPENDIX I: MATLAB® Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

deblank gets rid of trailing blanks in text

deg2rad converts from degrees to radians

demo shows MATLAB Examples in the Help Browser
det finds the determinant of a matrix

diag returns the diagonal of a matrix, or creates a
diagonal matrix

diff finds differences between consecutive elements;

used to approximate derivatives
disp simple display (output)

doc brings up a documentation page

dot dot product
double converts to the type double

echo toggle; displays all statements as they are executed

end ends control statements and functions; refers to
last element

endsWith returns true if text ends with a given pattern

eq functional equivalent of the equality operator
erase removes occurrences of a substring in text

error displays an error message

eval evaluates text as a function or command
exit quits out of MATLAB

exp exponential function

expand expands a symbolic math expression
eye creates an identity matrix

ezplot simple plot function that plots a function without

need for data vectors
factor factors a symbolic math expression

factorial factorial of an integer n, is 1*2*3*…*n
false equivalent to logical(0); creates an array of false

values

fclose closes an open file

feof true if the specified file is at the end-of-file
feval evaluates a function handle on text as a function

call

fgetl low-level input function reads one line from a file
as a character vector

fgets same as fgetl but does not remove newline

characters
fieldnames returns the names of fields in a structure as a cell

array of character vectors

figure create or refer to Figure Windows
fillmissing fills missing values in data structures such as tables

551MATLAB® Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

find returns indices of an array for which a logical

expression is true

fitctree fits a model to data using a decision tree for
classification

fitlm fits a linear regression model
fitrtree fits a model to data using a decision tree for

regression

fix rounds toward zero
flip flips an array, either left to right or up to down

fliplr flips columns of a matrix from left to right

flipud flips rows of a matrix up to down
floor rounds toward negative infinity

fopen low-level file function; opens a file for a specified

operation
format many options for formatting displays

fplot plots a function passed as a function handle

fprintf formatted display (output); writes either to a file or
to the screen (the default)

fscanf low-level file input function; reads from a file into

a matrix
func2str converts from a function handle to a character

vector

fzero attempts to find a zero of a function, given the
function handle

gca handle to the current axes

gcf handle to the current figure
get gets properties of a plot object

getaudiodata gets amplitude form an audiorecorder object

getframe gets a movie frame, which is a snapshot of the
current plot

ginput gets graphical coordinates from a mouse click

grid plot toggle; turns grid lines on or off
gscatter creates a scatter plot using different colors to

display groups

gtext allows the user to place text on a plot in location of
a mouse click

head displays the first eight rows from a table

height the number of rows in a matrix
help displays help information for built-in or user-

defined functions, or scripts

histogram plot function: plots a histogram
hold plot toggle; freezes plot in Figure Window so the

next will be superimposed

552 APPENDIX I: MATLAB® Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

i constant for the square root of negative one

im2double converts an image matrix to type double

imag imaginary part of a complex number
image displays an image matrix

imread reads in an image matrix
imshow displays an image

imwrite writes a matrix in an image format

inf constant for infinity
input prompts the user and reads user’s input

int symbolic math integration

int16 converts a number to a 16-bit signed integer
int2str converts from an integer to a character vector

storing the integer

int32 converts a number to a 32-bit signed integer
int64 converts a number to a 64-bit signed integer

int8 converts a number to an 8-bit signed integer

intersect set intersection
intmax largest value possible in a specified integer type

intmin smallest value possible in a specified integer type

inv inverse of a matrix
isa true if the input argument is the specified class

iscellstr true if the input argument is a cell array storing

only character vectors
ischar true if the input argument is a string, or character

vector

isdiag true if the input matrix is a diagonal matrix
isempty true if the input argument is an empty vector or

empty string

isequal true if two array arguments are equal element-by-
element

isfield true if a string or character vector is the name of a

field within a structure
iskeyword true if the text input argument is the name of a

keyword

isletter true if the input argument is a letter of the alphabet
ismember set function receives two sets; true for every

member of first set also in second

ismethod true if a string or character vector is a method of an
object

ismissing true for missing entries in a data structure

isnumeric true if the argument is any numeric type
isreal true if input argument is a real number (not

complex)

553MATLAB® Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

issorted true if the input vector is sorted in ascending order

issortedrows true if the rows in a matrix are sorted

isspace true if the input argument is a white space
character

isstring true if the input argument is a string array
isStringScalar true if the input argument is a string scalar

isstrprop true if the string argument is a specified property

isstruct true if the input argument is a structure
issymmetric true if the input matrix is symmetric

j constant for the square root of negative one

jet returns all or part of the 256 colors in the jet
colormap

join appends strings in string arrays together

jsondecode decodes from JSON format, e.g., to a structure
jsonencode encodes a MATLAB type (e.g., a struct) into JSON

format

kmeans performs k-means clustering
legend displays a legend on a plot

length length, or number of elements, in a vector; largest

dimension for a matrix
limit computes limit of a symbolic math expression

line graphics primitive object that creates a line

linspace creates a vector of linearly spaced values
load inputs a file into amatrix or reads variables from a .

mat file (the default)

log natural logarithm
log10 base 10 logarithm

log2 base 2 logarithm

logical converts numbers to the type logical
loglog plot function that uses logarithmic scales for x and

y axes

logspace creates a vector of logarithmically spaced values
lookfor looks for text in the H1 comment line in files

lower converts letters to lower-case in a string or

character vector
listdlg creates a dialog box that allows the user to make a

choice

max the maximum value in a vector, or for every
column in a matrix

maxk the maximum k values in a vector, or for every

column in a matrix
mean the mean (average) of values in a vector, or every

column in a matrix

554 APPENDIX I: MATLAB® Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

median the median (middle) value in a sorted vector, or

for every column in a matrix

menu displays a menu of push buttons and returns
number of choice (not recommended)

mesh three-dimensional mesh surface plot
meshgrid creates x and y vectors to be used in images or as

function arguments

methods displays methods of a class
min the minimum value in a vector, or for every

column in a matrix

mink the minimum k values in a vector, or for every
column in a matrix

missing creates missing value(s) in a data structure

mobiledev creates an object to enable reading sensor data
from a mobile device

mod modulus after division

mode the maximum value in a vector, or for every
column in a matrix

movegui moves a Figure Window within the screen

movie plays a movie, or sequence of screen shots
movevars moves the locations of variables in a table

mustBeGreaterThan validates that one value is greater than another

mustBeInteger validates that an argument is of any integer type
mustBeNumeric validates that an argument is of any numeric type

mustBePositive validates that an argument is a positive number

mustBeText validates that an argument is text
mustBeVector validates that an argument is a vector

namelengthmax the maximum length of identifier names

NaN mathematics constant for “Not a Number”
nargin number of input arguments passed to a function

nargout number of output arguments expected to be

returned by a function
ne functional equivalent of the inequality operator

newline returns a newline character

normalize normalizes data in a table or matrix
nthroot nth root of a number

num2str converts a real number to a character vector

containing the number
numden symbolic math function, separates the numerator

and denominator of a fraction

numel total number of elements in a vector or matrix
ones creates a matrix of all ones

555MATLAB® Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

parula returns all or part of the 256 colors in the parula

colormap

pause pauses the code a specified number of seconds
patch graphics primitive object that creates a filled in

two-dimensional polygon
pi constant for π
pie creates a two-dimensional pie chart

pie3 creates a three-dimensional pie chart
pink returns all or part of the 256 colors in the pink

colormap

play plays an audio signal
plot simple plot function, plots 2D points; markers,

color, etc. can be specified

plot3 simple three-dimensional plot function, plots
three-dimensional points

plus the functional form of the addition operator; also

concatenates strings
polarplot plot function for complex numbers, plots the

magnitude and angle

poly2sym converts a vector of coefficients of a polynomial to
a symbolic expression

polyder derivative of a polynomial

polyfit fits a polynomial curve of a specified degree to data
points

polyint integral of a polynomial

polyval evaluates a polynomial at specified value(s)
pretty displays a symbolic expression using exponents

preview previews the first eight rows of a file without

opening and reading it in
print prints or saves a figure or image

prod the product of all values in a vector, or of every

column in a matrix
profile toggle; the Profiler generates reports on execution

time of code

properties displays properties of a class
quad integration using Simpson’s method

quit quits MATLAB

rad2deg converts from radians to degrees
rand generates uniformly distributed random real

number(s) in the open interval (0,1)

randi generates random integer(s) in the specified range
randn generates normally distributed random real

numbers

556 APPENDIX I: MATLAB® Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

readmatrix reads a spreadsheet or .csv file into a matrix

readtable reads a spreadsheet or .csv file into a table

real real part of a complex number
recordblocking records audio from a microphone

rectangle graphics primitive to create a rectangle; curvature
can vary

rem remainder after division

removevars removes variables in a table
renamevars renames variables in a table

repelem replicates elements in a matrix; creates m � n

copies of each
repmat replicates a matrix; creates m � n copies of the

matrix

reshape changes dimensions of a matrix to any matrix with
the same number of elements

rgb2gray converts an RGB image matrix to grayscale

rmfield remove a field from a structure
rmoutliers removes outliers from a data structure

rng random number generator, sets the seed for

random functions and gets the state
roots roots of a polynomial equation

rot90 rotates a matrix 90 degrees counterclockwise

round rounds a real number toward the nearest integer
rref puts an augmented matrix in reduced row echelon

form

save writes a matrix to a file or saves variables to a .mat
file

scatter creates a scatter plot

semilogx plot function, uses a scale for logarithmic x and a
linear scale for y

semilogy plot function, uses a linear scale for x and a

logarithmic scale for y
set sets properties of a plot object

setdiff set function, returns elements that are in one

vector, but not in another
setxor set exclusive or, returns the elements that are not in

the intersection of two sets

sgtitle puts a title on a set of subplots
sign signum, returns �1, 0, or 1

silhouette creates a silhouette plot to show categories for a

clustering algorithm
simplify simplifies a symbolic math expression

557MATLAB® Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

sin sine in radians

sind sine in degrees

single converts a number to the type single
sinh hyperbolic sine in radians

size returns the dimensions of a matrix
solve symbolic math function to solve an equation or

simultaneous equations

sort sorts the elements of a vector (default is ascending
order)

sortrows sorts the rows of a matrix; for text results in an

alphabetical sort
sound sends a sound signal (vector of amplitudes) to an

output device

sphere returns three-dimensional data vectors to create a
sphere

sprintf creates a formatted string or character vector

sqrt square root
startsWith true if input text starts with a given pattern

std standard deviation

stem two-dimensional stem plot
stem3 three-dimensional stem plot

str2double converts from text containing a number to a

double number
str2func converts text to a function handle

str2num converts from text containing number(s) to a

number array
strcat horizontal text concatenation

strcmp string compare, used instead of equality operator

for text
strcmpi string compare, ignoring case

strfind find a substring within a longer string or character

vector
string creates a string

strings preallocates a string array

strip removes leading and trailing whitespace characters
from text

strjoin concatenates text in a cell array or string array into

a long string
strlength determines the length of a string

strncmp string compare the first n characters of text

strncmpi string compare the first n characters, ignoring case
strrep replace all occurrences of one substring with

another within longer text

558 APPENDIX I: MATLAB® Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

strsplit splits a string or character vector into elements in a

cell array

strtok breaks one longer string into two shorter strings,
with all characters retained

strtrim deletes both leading and trailing blanks from a
string or character vector

struct create a structure by passing pairs of field names

and values
subplot creates a matrix of plots in the Figure Window

subs substitutes a value into a symbolic math

expression
subtitle puts a subtitle on a plot

sum the sumof the values in a vector or of every column

in a matrix
summary shows variables and statistics for a table

surf three-dimensional surface plot

sym creates a symbolic variable or expression
sym2poly converts a symbolic expression to a vector of

coefficients for a polynomial

syms creates multiple symbolic variables
table creates a table data structure

tail displays the last eight rows from a table

text graphics primitive object to put text on a plot
textscan file input function, reads from a file into a cell

array of column vectors

tic / toc used to time code
timeit times a function execution

title writes text as a title on a plot

trace the trace (sum of values on the diagonal) of a
matrix

trapz trapezoidal rule to approximate the area under a

curve
true equivalent to logical(1), creates a matrix of all true

values

type display the contents of a file in the Command
Window

uibuttongroup groups together button objects

uicontrol basic function to create graphical user interface
objects of different styles

uifigure creates a UI Figure Window

uilabel creates a UI label
uislider creates a UI slider

559MATLAB® Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

uint16 converts a number to a 16-bit unsigned integer

uint32 converts a number to a 32-bit unsigned integer

uint64 converts a number to a 64-bit unsigned integer
uint8 converts a number to an 8-bit unsigned integer

uipanel groups together graphical user interface objects
union set function, the union of two sets

unique returns all of the unique values within a set

(vector)
upper converts all letters to upper-case

var variance

varargin built-in cell array to store input arguments
varargout built-in cell array to store output arguments

weboptions creates options as Key Value pairs for web service

requests
webread reads information from a RESTful web service

webwrite reads information from aweb service using a POST

request
who displays variables in the base workspace

whos displays more information on the variables in the

base workspace
width returns the number of columns in a matrix

writematrix writes from a matrix to a spreadsheet or .csv file

writetable writes from a table to a spreadsheet or .csv file
xlabel puts text as a label on the x-axis of a plot

xline plots a vertical line

xlsread reads from a spreadsheet with filename.xls (no
longer recommended)

xlswrite writes to a spreadsheet with filename.xls (no

longer recommended)
xticklabels specifies labels for the tick marks on the x-axis of a

plot

xor exclusive or, true if only one argument is true
ylabel puts text as a label on the y-axis of a plot

yline plots a horizontal line

zeros creates a matrix of all zero values
zlabel puts text as a label on the z-axis of a three-

dimensional plot

560 APPENDIX I: MATLAB® Functions

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

APPENDIX II

MATLAB® and Simulink Toolboxes

In addition to the many functions included in MATLAB, there are additional
Toolboxes that can be added. These toolboxes have groups of related functions

that can be used for more advanced computations and data processing. The

MathWorks, Inc. also has a family of simulation software called Simulink; it,
too, can be augmented with additional Toolboxes. For more detailed informa-

tion, see the website www.mathworks.com.

Here is a list of some of these Toolboxes:

Statistics and Machine Learning Toolbox™ (some used in this text)

Deep Learning Toolbox™
Reinforcement Learning Toolbox™

Text Analytics Toolbox™ (mentioned in this text)

Curve Fitting Toolbox™ (mentioned in this text)
Symbolic Math Toolbox™ (some used in this text)

Partial Differential Equation Toolbox™

Optimization Toolbox™
Mapping Toolbox™

Image Processing Toolbox™

Data Acquisition Toolbox™
Signal Processing Toolbox™

Control System Toolbox™

Parallel Computing Toolbox™
Robotics Toolbox™

Automated Driving Toolbox™

Aerospace Toolbox™
Bioinformatics Toolbox™

MATLAB. https://doi.org/10.1016/B978-0-323-91750-6.09998-4

561

Copyright © 2023 Elsevier Inc. All rights reserved.

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This page intentionally left blank

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Index

Note: Page numbers followed by f indicate figures, t indicate tables, and b indicate boxes.

A
abs, 56–57
Abstract data types, 370
Accuracy, 32
Action, 131–132, 157
Addition, of complex numbers, 503
Algorithm, 84–85
American Standard Code for

Information Interchange
(ASCII), 18

angle, 506
Animation, 419–420
Anonymous functions, 341, 348–350
ans, 7
API calls, 329
App Designer, 475–479
components, 474–475
examples, 482–484, 483f
layout, 476f
UI figure functions, 479–481,

480–481f
appdesigner, 475–476
append, 254–255
Appending to a file, 105–107
appex, 219–220
Application Programming Interface

(API), 329

areacirc, 206–207
areafori, 342–343
Area plots, 412–416, 413f
Argument(s), 14, 111
input, 111
multiple, 115–117
output, 111
variable number of, 341–345

Argument block, 346–347

Arithmetic mean, 74
Array, 40
Array division, 61–62
Array multiplication, 61–62
Array operations, 40, 60–62
array2table, 299
Artificial Intelligence (AI), 30–31
Ascending order, 300

asin, 26

asind, 26

asinh, 26

askforn, 219
Assignment operator, 6
Assignment statements, 6–11
Associativity, 13
Attributes, 396
Audio files, 488

audioplayer, 486

audiorecorder, 486
Augmentation, matrix, 509
Average, 73–74
axis, 98–99

B
Bar, 412–416, 413f, 415f
widths in, 420–421, 421f

barh, 412–416
Base case, 356
Base workspace, 118, 224
Binary classifier, 31
Binary operators, 12
Binning/bucketing, 150
Bins, 416
Black box, 538

blanks, 253
Block comment, 88

BMP image, 455
Boolean expressions. See Relational

expressions
Branching statements, 131
Breakpoint alley, 232–233, 233f
Breakpoints, 231–232
Bubble plot, 412
Bug, 229
Built-in files, 331–332
Built-in functions, 9, 13–15

checkcode, 189
logical, 64–67

Built-in image files, 487
Built-in numerical functions, 26–28
Button groups, in GUI, 472–474,

475f

C
calcarea, 112–113, 113b
calccircum2, 210

calcprof, 285
Calculus

differentiation, 523–524
integration, 521–523
in Symbolic Math Toolbox™,

524–525
callback, 403, 461, 463f, 467f

callbackfn, 461
Call-by-value method, 210
Calling a function, 14, 112–114
Canvas, 476
Capitalization errors, 15
Cascading if-else statement, 139
Casting, 23
Categorical arrays, 278, 296–297
Cell arrays, 277–282

creation, 278–279 563

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Cell arrays (Continued)
elements and attributes, 279–281
storing character vectors in,

281–282
celldisp, 281
Cell indexing, 280–281
cellplot, 281
Cells, 278

cellstr, 281
Central tendency, 73–76
Centroid, 544

char, 252, 279
Character encoding, 18
Characters, 11, 18, 249–252
Character set, 18
Character vectors, 11, 249–252

operations on, 253–263
storage in cell arrays, 281–282

checkcode, 189
Chirp, 484–486, 485f
circlescript, 88

circshift, 76

classdef, 378
Class definition, 370, 378–382
Classes, 10, 369–370, 403
Classification algorithms, 31
Classification functions, 540–542
Classification Learner App, 542

clf, 102
Close the file, 319–321
Clustering algorithms, 31, 239–240,

544–546
Code Analyzer Reports, 189
Code cells, 236–238
Cody™ website, 30

collect, 516
Colon operator, 41–42, 41b, 47
colorbar, 424

colorcube, 488
Colormap matrix, 446
Colormaps, 446–452

multiple, 452, 452f
parula, 448, 448f
pink colormap for sphere, 450, 451f
random colors, 449–450, 450f
shades of red, 450, 451f
turbo, 447, 449f

Color rings, 490, 490f
Column major order, 47
Column vector, 39–40, 44
Columnwise, 47

comet, 419–420

Command History Window, 5, 7, 86
Commands, 119–120
Command Window, 4–5, 4f, 86
Comma-separated list, 280–281
Comment blocks, 88
Common logarithm, 27
Commutative operators, 21
Compiler, 85
Complex numbers, 501–508

addition and subtraction, 503
complex conjugate and absolute

value, 505
equality for, 503
equations represented as

polynomials, 505
multiplication, 504–505
plotting, 506–508, 507f
polar form, 506

Components, in App Designer,
474–475

Computer program, 83
Concatenating, 42
Condition, 131–132
Conditional loops, 157
Confusion matrix, 307–308
conj, 505
Constants, 15
Constructor function, 378, 398–399
contains, 267
Content indexing, 279
Continuation operator, 12
Control, 111
Control characters, 249–250
Conversion characters, 92

converttemp, 345
Copy constructor, 399
Core objects. See Primitive graphics

objects

corrcoef, 124
Correlation coefficient, 124

cos, 103–104
count, 261–262
countcats, 296
Counted loops, 157
Counting, 176–177
createComponents, 477–479
Cropping, image, 488
Cross product, 70
Cross validation, 191–192
csvread, 318

csvwrite, 318

cumprod, 57–59, 183

cumsum, 57–59, 183
Cumulative product, 57–58
Cumulative sum, 57–58
Current Folder, 5
Customizing plots, 420–422

D
Database, 277
Data correlations, 193–194
Data formats, 332–333
Data normalization, 124–125
Data, randomizing, 192–193
Data Science (DS), 30–31
Data scrubbing, 333–334
Data sets, bias in, 487
Data structures, 277

advanced, 295–300
cell arrays, 278–282
creating and modifying structure

variables, 282–284
nested structure, 292–293
passing structures to functions, 285
related structure functions,

286–287
sorting, 300–308
vectors of nested structures,

294–295
vectors of structures, 287–292

Data transfer
lower-level file I/O functions, 317,

319–328
spreadsheet and CSV files, writing

and reading, 318–319
with web sites, 328–334

Data visualization, 404–405
dbcont, 231–232
dbquit, 231–232
dbstep, 232

dbstop, 231–232
deblank, 258
Debugger, 231–232
Debugging, 229–234
Decision trees, 150–151, 541f
Declaring variables, 227
Decrementing, 8
Default, 5–7, 11
Default input device, 84
Default output device, 85
Deleting elements, 59
Delimiter, 262–263
Descending order, 300
Desktop environment, 5–6

564 Index

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Destructor function, 402

det, 513

diag, 71–72
Diagonal matrix, 71

diff, 59–60, 66
Differentiation, 523–524
Dimensionality reduction, 334
Dimensions, of vectors and matrices,

48–54
disp, 92, 113–114, 133, 138, 284,

317, 502–503
Doc debug, 231
Documentation, 87–88
Dot operator, 283
Dot product, 70
Double precision, 10
Dynamic field names, 286b

E
echo, 231
Echo printing, 160–161, 174
Edges, 150–151
Editor, 86, 86f, 231–232
Efficient code, 188–189
Elements, 40, 42
Ellipsis, 11–12
elseif clause, 140–142
Empty array, 89–90
Empty vector, 54–56
End node, 150–151
End of the file, 321
Endpoint, 329

endsWith, 267

eoption, 218–220
erase, 259

error, 137–138
Error-checking, 136–137, 177
for integers, 178–180
user input, in while loops, 177–180

Error message, 91
Euclidean distance, 239

eventdata, 461, 470
Event-driven programming, 402–403,

461
Events, 402–403
Executable file, 85
Execute/run, 85

expand, 516–517
expfn, 219, 222

explaine, 219, 221
Exploratory data analysis, 332
Exponential notation, 12–13

External file, 84
Extrapolation, 437

F
factgthigh, 174

factor, 516

Fclose, 320–321, 325
Feature analysis, 333–334
Feature engineering, 333–334
fgetl, 321–323
fgets, 321–323
fieldnames, 286
Fields, 277
Field width, 93–94
figure, 102, 371
File identifier, 319–320
File input and output (file I/O),

317
File types, 317

fillmissing, 536

find, 64, 66

fitctree, 540–541
fitlm, 543
Fitting polynomial curves, 525–528
flip, 52

fliplr, 52

flipud, 52
Floating point, 10

fopen, 319–320
for loop, 158–164
Format command, 11–12
Format specifier, 92
Formatting, 92

fplot, 353, 518–519, 518f
fprintf, 92, 93b, 96, 113–114,

137–138, 159, 166, 257, 317,
323–324, 503

fscanf, 325

func1, 226–227
func2, 226–227
func2str, 351–352
Function body, 111
Function call, 111
Function functions, 341, 350–354
Function handles, 341, 348–354
Function header, 111
Functions, 119–120, 549, 551–560
anonymous, 341, 348–350
classification, 540–542
definition, 111–112
in live script, 122, 122f

local, 215–217
overloading, 382–384

Function stubs, 233–234

G
gallery, 76
Gauss-Jordan method, 513
General (inductive) case, 356

getaudiodata, 486–487
getframe, 420
GIF image, 455

ginput, 429
Global stream, of random numbers,

16
Global variable, 225–226
Gong, 484
Graphical User Interface

Development Environment
(GUIDE), 457

Graphical User Interfaces (GUIs), 403,
445

basics of, 457–461, 460f
button groups, 472–474, 475f
with image and slider for

brightness, 471–472, 473f
plots and images in, 470–472, 471f,

473f
push buttons, 461–470, 465f
sliders, 461–470, 467f
text boxes, 461–470, 463f

Graphics, 370–377
Graphics objects, 370

grid, 102, 423, 423f

groot, 371

gscatter, 545

gtext, 429

guihandles, 489
GUIs. See Graphical User Interfaces

(GUIs)

guiSlider, 465–466
guiSliderPlot, 470–471
guiWithTwoPushbuttons, 467

H
Handel, 484
Handle classes, 370, 387–396
help, 13–15, 206
High-level languages, 85

hilb, 76
Histograms, 416–418, 416f
hObject, 461, 469

565Index

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Hockey rink, 443, 443f

hold, 102
Hybrid languages, 369
Hyperparameters, 240–241
Hyperparameter tuning, 239–241

I
Identifier names, 9
Identity matrix, 72

if-else statement, 135–138
if statement, 131–135
imag, 502
Image matrix, 446
Image processing, 445–456

colormaps, 446–452
image files, 455–456, 456–457f
true-color matrices, 452–455

Imaginary part, of number, 501

imfinfo, 488

imread, 455

imshow, 456, 487

imwrite, 455–456
Incrementing, 8
Index, 42
Index vector, 43

ind2sub, 76
Infinite loop, 172
Infinite recursion, 356
Inheritance, 370
Initializing, 8
Inner dimensions, 67–68
Inner function, 354
Inner loop, 165
Inner parentheses, 13
Inner product, 70

input, 253
Input arguments, 111
Input/output (I/O), 89–97
Instances, 370
Instantiation, 370

int, 524
Integers, error-checking for, 178–180
Integration, 521–523
Interpolation, 437
Interpreter, 85–86
intersect, 497–498
intmat, 53–54
intmax, 23

intmin, 23

int2str, 267–268
inv, 509, 513

Inverse, of matrix, 509

iscellstr, 281–282
ischar, 150, 266

iscolumn, 150

isempty, 148, 179, 253–254
isequal, 64–65, 146–147
isfield, 286

isfloat, 150
“is” functions, 146–151, 266–267
isinteger, 150

iskeyword, 149

isletter, 146–147, 266
islogical, 150

ismatrix, 150

ismember, 497–498, 500
ismethod, 382

ismissing, 536

isnan, 149

isnumeric, 148

isreal, 150, 503

isrow, 150

issorted, 497–498, 500–501
issortedrows, 305

isspace, 266

isstr, 150

isstring, 266

isStringScalar, 266–267
isstrprop, 267

isstruct, 286

isvector, 150
Iterate, 158

J
Javascript Object Notation (JSON),

329

jet, 447

join, 265–266
JPEG image, 455–456, 456f
jsondecode, 330–331

K
Keywords, 9
K-fold validation, 191–192
K-means clustering, 544

L
Labeled data, 31
Leading blanks, 94, 252
Leaf node, 150–151

Least squares regression, 439–440
legend, 102, 104

length, 90, 110–111, 251
limit, 524–525
limite, 219, 221
Linear algebraic equation, 508–514

reduced row echelon form,
513–514

2�2 system of equations,
511–513

Linear indexing, 47, 63
Line object, 426, 427–428f
linepts, 438
Line types, 101–102
linspace, 41–42, 91–92
Listeners, 402–403
Live Editor Toolstrip, 121f
Live scripts, 84, 120–125, 234–236,

235–236f
load, 29, 105, 107, 120, 170–171
Locale setting, 25
Local functions, 118–119, 215–217
Local variables, 117–118, 224–225
Logarithm, 27
Logical built-in functions, 64–67
Logical errors, 230
Logical expressions, 134–135, 142.

See also Relational expressions
Logical indexing, 63
Logical operators, 18, 21t
Logical true and false, 134–135
Logical vector, 62–67

logical built-in functions, 64–67
relational expressions with vectors

and matrices, 62–63
loglog, 418–419
Log scales, 418–419
logspace, 41–42
lookfor, 88–89
Looping statements, 157
Loop or iterator variable, 158–160
Lower-level file I/O functions, 317,

319–328

M
Machine language, 85
Machine Learning (ML), 30–32, 533

algorithms and model
performance, 537–539

basic workflow, 534–537
built-in data sets, 534–535
preprocessing data, 535–537

566 Index

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Statistics and Machine Learning
Toolbox™, 540–546

Maclaurin series, 218
Main diagonal, of square matrix, 71
Main function, 215
Main program, 212
Manhattan distance, 239
Markers, 101
MAT-files, 28–29
appending variables to, 29
reading from, 29
writing variables to file, 28–29

MathWorks®, 4, 29
MATLAB® Drive™, 30
MATLAB® Grader™, 30
MATLAB® Mobile™, 30
MATLAB® Online™, 30
Matrices, 39–56
as function arguments, 56–59
loops with, 180–189
operations, 67–76, 508–509
printing, 95–97
properties, 67–76
relational expressions with,

62–63
scalar and array operations, 60–62
transpose, 508
variables, 44–48

Matrix augmentation, 509
Matrix multiplication, 67, 69–70
max, 57–58
Mean, 73–74
Median, 73–75
menu, 145
Menu-driven, 218
Menu-driven modular program,

218–224
meshgrid, 76, 424–426, 425f
min, 57–58
Missing, 536
Mnemonic, 9

mobiledev, 30

mod, 26
Modes, 73–75, 105
Modular programs, 84, 212–215
movegui, 459

movie, 420
Multiple colormaps, 452, 452f
Multiplication, of complex numbers,

504–505
mustBeGreaterThan, 346

mustBeInteger, 346

mustBeNumeric, 346

mustBePositive, 346

mustBe-Text, 346

mustBeVector, 346
Mycolors, 433

mymax, 133–134b
mymin, 133–134b
mynum, 6–8
mysumscript, 225

N
namelengthmax, 9, 34
Name-value pairs, 283
NaN values, 149–150
nargin, 342–343, 379–381
nargout, 342, 345
Natural language processing,

270–271
Natural logarithm, 27

ndims, 76
Negative correlation, 124
Nested functions, 341,

354–355
Nested loop, 165–172
Nested parentheses, 13
Nested structure, 292–293
Nesting calls, 59b
Nesting statements, 138–142
Newline character, 92–93
Nodes, 150–151
numden, 518

numel, 50
Numerical expressions, 11–17
built-in functions, 13–15
constants, 15
ellipsis, 11–12
format command, 11–12
help, 13–15
operators, 12–13
random numbers, 15–17

Numerical integration, 521

num2str, 267–268

O
Object code, 85
Object handle, 370
Object-oriented programming

(OOP), 369–370
Objects, 370–377
One-hot encoding, 307
Open the file, 319–321

Operations
on character vectors, 253
on string arrays, 264–266
on strings, 253–254
on text, 252–266

Operators, 12–13
binary, 12
logical, 18, 21t
overloading, 382–384
precedence rules, 13, 22t, 67t
relational, 18–19, 62–63
unary, 12

Ordinal categorical arrays, 296
Ordinary method, 381

otherwise clause, 143–145
Outer dimensions, 67–68
Outer function, 354
Outer loop, 165–166
Outer product, 70
Outliers, 73–76
Output arguments, 111
Overfitting, 527, 527f
Overloading, 382–384

P
Parent/child, 370
Parentheses

inner, 13
nested, 13

Parula colormap, 447, 448f

pascal, 76
Patch, 431, 431f
Patch colors, 433, 433f
Patch object, 432–433, 432f
Percentiles, 404
Permission, 319–320
Persistent variable, 226–228
persistex, 227
Pie charts, 416–418, 417f

exploding, 422–423, 422f
using percentage, 417–418, 418f

Pink colormap, for sphere, 450, 451f
Pixels, 445–446
Place holder, 92

play, 486

plot, 98–101
plot3, 423
Plot functions, 412–422

area, 412–416
bar, 412–416
barh, 412–416
histograms, 416–418, 416f

567Index

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Plot functions (Continued)
log scales, 418–419
pie charts, 416–418, 417–418f
scatter plot, 412–416
stem, 412–416

Plotonepoint, 98
Plots

applications, 433–436
plotting file data, 435–436,

436f
plotting from a function,

433–435, 434f
complex number, 506–508, 507f
customizing, 420–422
in Graphical User Interfaces,

470–472
saving and printing, 436–440, 439f

PLOTS tab, 411
Plot symbols, 101
PNG image, 455
Polar form, of complex numbers,

506
Polarplot, 506

polyder, 523

polyfit, 438, 525

polyint, 523
Polynomial curves, 525–528
Polynomials, 437

poly2sym, 516

polyval, 437–438, 505–506, 523
Positive correlation, 124
Preallocation, 162
Precedence, 13

pretty, 518

preview, 318
Price field, 303
Primitive graphics objects,

426–433
Primitive objects, 370–371
Principal component analysis (PCA),

334

printem, 208–209
printrectarea, 216
Procedural languages, 369

prod, 57–58
Program organization

local functions, 215–217
modular programs, 212–215

Prompt, 4–5
Prompting, 84
Pseudorandom, 16
Push buttons, in GUI, 461–470,

465f

Q
quad, 523
Quadratic fit, 526, 526f
Quantiles, 404
Quartiles, 404
Query parameters, 329

R
Radius, 9

rand, 16–17, 45–46
randi, 17–18, 45–46
Random colors, 449–450, 450f, 491f
Random numbers, 15–17
randperm, 192

range, 76
Range, of type, 23–26
Reading from a file, 107–109
readlenwid, 216

readmatrix, 318

readtable, 318

real, 502
Real part, of number, 501
Record, 277–278
Recordblocking method, 486
Rectangle object, 429–430, 430–431f
Recursion, 355–356
Recursive functions, 341, 355–362
Reduced row echelon form, 513–514
Regression algorithms, 31, 539, 542
Regression functions, 543
Regression Learner App, 542–544
Relational expressions, 18–23
Relational operators, 18–19, 62–63
rem, 26

renamevars, 298–299
repelem, 54

repmat, 53
Reserved words, 9

reshape, 51–52
RESTful, 329
Return value, 14, 186

rgb2gray, 488

rmfield, 284–285
rmoutliers, 537

rng, 16
Root mean squared error (RMSE), 539
Root node, 150–151
Root object, 371

rot90, 52–53, 53b
Roundoff errors, 23
Row vector, 39–44, 48

rref, 514
Running product, 161–162
Running sum, 57–58, 161
runsum, 161, 171–172
Runtime errors, 229–230

S
Sampling frequency, 484

save, 28
Scalar, 39–40, 60–62
Scalar multiplication, 60
Scatter plot, 412, 413f
Scientific notation, 12–13
Scope of variables, 118
Script files, 5
Scripts, 83–88

bar chart produced by, 103, 103f
calling user-defined function from,

114–115
with grid, 103, 103f
with input and output, 97
live, 120–125
local functions in, 118–119
plots customization, 98–104

Seed, 16

SelectionChangedFcn, 473
Selection sort, 301
Selection statements, vectorizing

loops with, 185–188
semilogx, 418–419
Semilogy, 418–419, 419f
Sentiment analysis, 270–271
setdiff, 497–499
Set operations, 497–501
setxor, 497–499
sgtitle, 164

shiftdim, 76
Side effects, 209

sign, 57, 66
Silhouette coefficients, 539

simpleGuiNormalized,
459–460

Simple programs, 115

simplify, 516
Simulink toolboxes, 561

sin, 14, 26, 103–104, 351, 351f
sind, 26, 136

size, 141b
Sliders, in GUI, 461–470, 467f
SliderValueChanged, 482

solve, 519

sort, 75, 304

568 Index

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Sorting, 278, 300–308
data structures, 304–306
vectors of structures, 302–303

sortrows, 304–305
Sound files, 484–489
Sound wave, 484
Source code, 85
Sphere
mesh plot of, 424, 424f
pink colormap for, 450, 451f
surf plot of, 424, 425f

Splat, 484
Split validation, 191–192
sprintf, 255, 256b, 256f, 412
Square matrix, 45, 71–73
Stacked bar chart, 415f, 442f
Standard deviation, 360–361
Standard error, 320
Standard input, 320
Standard output, 320

StartMeUp, 483–484
startsWith, 267

StartupFcn, 483–484
Statistics and Machine Learning

Toolbox™, 540–546
stem3, 423
Stem plots, 412–416, 413f
Step value, 41, 41b

strcat, 254–255
strcmp, 259–260
strcmpi, 260

str2double, 268–269, 323–324
strfind, 261

string, 249, 251, 253, 281
String arrays, 249–252,

264–266
Strings, 11, 18
operations on, 253–263
scalars, 250–251

strip, 258–259
strjoin, 265, 281

strlength, 251, 265

strncmp, 260

str2num, 268–269
strrep, 261, 264b

strsplit, 265

strtok, 262, 264b, 323–324
strtrim, 258

struct, 283, 292
Subfunctions, 118–119, 215
sub2ind, 76

Subplot, 163–164, 412–413, 413f,
414b

subs, 517
Subscript, 42
Subscripted indexing, 46–47
Substring, 252

subtitle, 99–100
Subtraction, of complex numbers,

503

sum, 57–58, 76
summary, 296, 300

sumnnums, 161
Superclass/subclass, 370, 385–387
Supervised Learning, 31–32, 537–538
Surf plot, 424, 425f
Switch statement, 142–146
sym, 515
Symbolic mathematics, 497, 508, 515
displaying expressions, 518–519
simplification functions, 516–518
solving equations, 519–520
symbolic variables and expressions,

515–516
Symbolic Math Toolbox™, 524–525
Symmetric matrix, 73

sym2poly, 516

syms, 516
Syntax errors, 229

T
Tab completion, 15
Tables, 278, 297–300
Temporary variable, 133–134b
Terminal node, 150–151
Testfile, 107

testifelse, 231
Text, 427, 429f
boxes, in GUI, 461–470, 463f
“is” functions for, 266–267
operations on, 252–266

textscan, 325, 327
3D plots, 423–425, 423f
Three-dimensional matrices, 56
Throwing an error, 137–138
tic/toc, 189–190
TIFF image, 455

timeit, 354
Toggle, 102
Token, 262
Toolstrip, 6, 86f
Top-down design, 84
Trace, 72, 230–231

Trailing blanks, 252
Trailing zeros, 94
Train, 484–486, 485f
Transpose, 44, 508
Trapezoidal rule, 521–523
trapz, 522
True-color/RGB matrices, 446,

452–455, 453–455f, 491f
try/catch, 151
Turbo colormap, 447, 449f
Type casting, 23–26

U
uibuttongroup, 458, 473,

488–489
uicontrol, 458, 479

uifigure, 477–481, 480f
uilabel, 478

uint8, 452, 455

uint16, 455

uipanel, 458

uislider, 479

uislideruilabel, 480

uitable, 489
Unary operators, 12
Underfitting, 527

union, 497–498
unique, 497–499
Unsupervised Learning, 31–32,

539
Unwinding a matrix, 47
User, 6, 89
User-defined functions,

109–118
functions that do not return any

values, 203–204
functions that returnmore than one

value, 203–208
passing arguments, 210–212
return values versus printing,

209–210
task without returning values,

208–209
types of, 203–212

V
Validation functions, 346

ValueChangedFcn, 480, 484
Value classes, 370, 387–396
varargin, 342–343, 380–381
varargout, 342

569Index

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

Variable number
of arguments, 341–345
of input arguments, 342–344
of output arguments, 344–345

Variables, 6–11
commands, 9
MAT-files for, 28–29
names, 9–10
persistent, 226–228
types, 10–11

Variable scope, 224–228
Variance, 360–361
Vectorized code, 158, 181
Vectors, 39–56

correlation between, 123–124
extending, 175–176
as function arguments, 56–59
loops with, 180–189
matrix multiplication, 69–70

of nested structures, 294–295
preallocation, 162
printing, 95–97
relational expressions, 62–63
scalar and array operations, 60–62
of structures, 287–292
sums and products, 181–184
of variables, 49

W
weboptions, 330

webread, 329–330
webwrite, 329

whatslid, 480
While loops, 172–180

counting in, 176–177
error-checking user input in,

177–180

input in, 174–176
multiple conditions in, 174

White space characters,
249–250

Workspace Window, 5, 8

writematrix, 318

writetable, 318
Writing to a file, 105–106

X
xlsread, 318

xlswrite, 318

xticklabels, 435–436

Z
Zero crossings, 66

zlabel, 423

570 Index

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

This book belongs to Grant Heidelbaugh (g.heidelbaugh@gmail.com) Copyright Elsevier 2022

	Cover
	Copyright
	Contents
	Preface
	Part 1 Introduction to Programming Using MATLAB
	1 Introduction to MATLAB
	2 Vectors and Matrices
	3 Introduction to MATLAB Programming
	4 Selection Statements
	5 Loop Statements and Vectorizing Code
	6 MATLAB Programs
	7 Text Manipulation
	8 Data Structures
	9 Data Transfer
	10 Advanced Functions
	11 Introduction to Object-Oriented Programming and Graphics
	12 Advanced Plotting Techniques
	13 Sights and Sounds
	14 Advanced Mathematics
	15 Basic Machine Learning Algorithms and Concepts
	Appendix 1
	Appendix 2
	Index

